Definition
Neurons communicate within networks using electrical signals. These signals are processed by single neurons, translating the electrical code into biochemical signals that subsequently reach the cell nucleus, where transcriptional responses are regulated by highly diverse intracellular space- and time-dependent ionic fluxes. Calcium plays an important role in communicating electrical activity in networks – and on the plasma membrane of neurons – to the cell nucleus (Hardingham et al. 1997; Chawla et al. 1998; Dolmetsch et al. 1998; Milner et al. 1998; Bading 2000; West et al. 2002). Through diffusion and reaction with second messengers (Allbritton et al. 1992, Starovasnik et al. 1992; De Koninck and Schulman 1998; Mermelstein et al. 2001, Schmidt et al. 2003) and intricate calcium exchange mechanisms, e.g., mitochondrial (Kirichok et al. 2004; Popov et al. 2005; Chouhan et al. 2010; Dash et al. 2009; Pradhan et al. 2010) and endoplasmic calcium store exchange (De Young and...
References
Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-triphosphate. Science 258:1812–1815
Bading H (2000) Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis. Eur J Biochem 267:5280–5283
Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29(30):9458–9470
Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509
Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK (2008) Mechanism of Ca2+ disruption in alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883
Chouhan AK, Zhang J, Zinsmaier KE, Macleod GT (2010) Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 30(5):1869–1881
Dash RK, Qi F, Beard DA (2009) A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter. Biophys J 96:1318–1332
De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230
De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89:9895–9899
Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936
Gin E, Falcke M, Wagner LE, Yule DI, Sneyd J (2009) A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys J 96:4053–4062
Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease in mice. J Neurosci 30(36):12128–12137
Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct function of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265
Hayashi Y, Majewska AK (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46:529–532
Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163
Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2 + -induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 71:3477–3487
Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364
Martone ME, Zhang Y, Simpliciano VM, Carragher BO, Ellisman MH (1993) Three-dimensional visualization of the smooth endoplasmic reticulum in purkinje cell dendrites. J Neurosci 13(11):4636–4646
Mermelstein PG, Deisseroth K, Dasgupta N, Isaksen AL, Tsien RW (2001) Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci U S A 98(26):15342–15347
Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468
Muller D, Nikonenko I, Jourdain P, Alberi S (2002) LTP, memory and structural plasticity. Curr Mol Med 2:605–611
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293
Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65
Pradhan RK, Beard DA, Dash RK (2010) A biophysically based mathematical model for the kinetics of mitochondrial Na + -Ca2+ antiporter. Biophys J 98:218–230
Queisser G, Wittum G (2011) A method to investigate the diffusion properties of nuclear calcium. Biol Cybern 105:211–216
Queisser G, Wittmann M, Bading H, Wittum G (2008) Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data. J Biomed Opt 13(1):014009
Queisser G, Wiegert S, Bading H (2011) Structural dynamics of the cell nucleus. Nucleus 2(2):98–104
Ryglewski S, Pflueger HJ, Duch C (2007) Expanding the neuron’s calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation. PLOS Biol 5(4):818–827
Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551(1):13–32
Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17(1):190–203
Starovasnik MA, Su DR, Beckingham K, Klevit RE (1992) A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Protein Sci 1:245–253
Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruption in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189
Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101
Van Aelst L, Cline HT (2004) Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 14:297–304
West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931
Wittmann M, Queisser G, Eder A, Wiegert S, Bengtson CP, Hellwig A, Wittum G, Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29(47):14687–14700
Wolf S, Grein S, Queisser G (2013) Employing NeuGen 2.0 to automatically generate realistic morphologies of hippocampal neurons and neural networks in 3D. Neuroinformatics 11:137–148
Xylouris K, Queisser G, Wittum G (2010) A three-dimensional mathematical model of active signal processing in axons. Comput Visual Sci 13:409–418
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this entry
Cite this entry
Queisser, G. (2013). Transcriptional Control Dysfunction, Modeling. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_717-3
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7320-6_717-3
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Online ISBN: 978-1-4614-7320-6
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences