Skip to main content

Transcriptional Control Dysfunction, Modeling

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 174 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-triphosphate. Science 258:1812–1815

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2000) Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis. Eur J Biochem 267:5280–5283

    Article  CAS  PubMed  Google Scholar 

  • Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29(30):9458–9470

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK (2008) Mechanism of Ca2+ disruption in alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chouhan AK, Zhang J, Zinsmaier KE, Macleod GT (2010) Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 30(5):1869–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dash RK, Qi F, Beard DA (2009) A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter. Biophys J 96:1318–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    Article  PubMed  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89:9895–9899

    Article  PubMed Central  PubMed  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  CAS  PubMed  Google Scholar 

  • Gin E, Falcke M, Wagner LE, Yule DI, Sneyd J (2009) A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys J 96:4053–4062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease in mice. J Neurosci 30(36):12128–12137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct function of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Majewska AK (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46:529–532

    Article  CAS  PubMed  Google Scholar 

  • Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2 + -induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 71:3477–3487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  • Martone ME, Zhang Y, Simpliciano VM, Carragher BO, Ellisman MH (1993) Three-dimensional visualization of the smooth endoplasmic reticulum in purkinje cell dendrites. J Neurosci 13(11):4636–4646

    CAS  PubMed  Google Scholar 

  • Mermelstein PG, Deisseroth K, Dasgupta N, Isaksen AL, Tsien RW (2001) Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci U S A 98(26):15342–15347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Nikonenko I, Jourdain P, Alberi S (2002) LTP, memory and structural plasticity. Curr Mol Med 2:605–611

    Article  CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65

    Article  PubMed  Google Scholar 

  • Pradhan RK, Beard DA, Dash RK (2010) A biophysically based mathematical model for the kinetics of mitochondrial Na + -Ca2+ antiporter. Biophys J 98:218–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Queisser G, Wittum G (2011) A method to investigate the diffusion properties of nuclear calcium. Biol Cybern 105:211–216

    Article  PubMed  Google Scholar 

  • Queisser G, Wittmann M, Bading H, Wittum G (2008) Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data. J Biomed Opt 13(1):014009

    Article  PubMed  Google Scholar 

  • Queisser G, Wiegert S, Bading H (2011) Structural dynamics of the cell nucleus. Nucleus 2(2):98–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryglewski S, Pflueger HJ, Duch C (2007) Expanding the neuron’s calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation. PLOS Biol 5(4):818–827

    Article  CAS  Google Scholar 

  • Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551(1):13–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17(1):190–203

    CAS  PubMed  Google Scholar 

  • Starovasnik MA, Su DR, Beckingham K, Klevit RE (1992) A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Protein Sci 1:245–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruption in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101

    Article  CAS  PubMed  Google Scholar 

  • Van Aelst L, Cline HT (2004) Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 14:297–304

    Article  PubMed  Google Scholar 

  • West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931

    Article  CAS  PubMed  Google Scholar 

  • Wittmann M, Queisser G, Eder A, Wiegert S, Bengtson CP, Hellwig A, Wittum G, Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29(47):14687–14700

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Grein S, Queisser G (2013) Employing NeuGen 2.0 to automatically generate realistic morphologies of hippocampal neurons and neural networks in 3D. Neuroinformatics 11:137–148

    Article  CAS  PubMed  Google Scholar 

  • Xylouris K, Queisser G, Wittum G (2010) A three-dimensional mathematical model of active signal processing in axons. Comput Visual Sci 13:409–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Queisser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Queisser, G. (2013). Transcriptional Control Dysfunction, Modeling. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_717-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_717-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics