Skip to main content

Transcriptional Control Dysfunction, Modeling

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 175 Accesses

Definition

Neurons communicate within networks using electrical signals. These signals are processed by single neurons, translating the electrical code into biochemical signals that subsequently reach the cell nucleus, where transcriptional responses are regulated by highly diverse intracellular space- and time-dependent ionic fluxes. Calcium plays an important role in communicating electrical activity in networks – and on the plasma membrane of neurons – to the cell nucleus (Hardingham et al. 1997; Chawla et al. 1998; Dolmetsch et al. 1998; Milner et al. 1998; Bading 2000; West et al. 2002). Through diffusion and reaction with second messengers (Allbritton et al. 1992, Starovasnik et al. 1992; De Koninck and Schulman 1998; Mermelstein et al. 2001, Schmidt et al. 2003) and intricate calcium exchange mechanisms, e.g., mitochondrial (Kirichok et al. 2004; Popov et al. 2005; Chouhan et al. 2010; Dash et al. 2009; Pradhan et al. 2010) and endoplasmic calcium store exchange (De Young and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-triphosphate. Science 258:1812–1815

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2000) Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis. Eur J Biochem 267:5280–5283

    Article  CAS  PubMed  Google Scholar 

  • Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29(30):9458–9470

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK (2008) Mechanism of Ca2+ disruption in alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chouhan AK, Zhang J, Zinsmaier KE, Macleod GT (2010) Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 30(5):1869–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dash RK, Qi F, Beard DA (2009) A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter. Biophys J 96:1318–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    Article  PubMed  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89:9895–9899

    Article  PubMed Central  PubMed  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  CAS  PubMed  Google Scholar 

  • Gin E, Falcke M, Wagner LE, Yule DI, Sneyd J (2009) A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys J 96:4053–4062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease in mice. J Neurosci 30(36):12128–12137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct function of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Majewska AK (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46:529–532

    Article  CAS  PubMed  Google Scholar 

  • Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2 + -induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 71:3477–3487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  • Martone ME, Zhang Y, Simpliciano VM, Carragher BO, Ellisman MH (1993) Three-dimensional visualization of the smooth endoplasmic reticulum in purkinje cell dendrites. J Neurosci 13(11):4636–4646

    CAS  PubMed  Google Scholar 

  • Mermelstein PG, Deisseroth K, Dasgupta N, Isaksen AL, Tsien RW (2001) Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci U S A 98(26):15342–15347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Nikonenko I, Jourdain P, Alberi S (2002) LTP, memory and structural plasticity. Curr Mol Med 2:605–611

    Article  CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65

    Article  PubMed  Google Scholar 

  • Pradhan RK, Beard DA, Dash RK (2010) A biophysically based mathematical model for the kinetics of mitochondrial Na + -Ca2+ antiporter. Biophys J 98:218–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Queisser G, Wittum G (2011) A method to investigate the diffusion properties of nuclear calcium. Biol Cybern 105:211–216

    Article  PubMed  Google Scholar 

  • Queisser G, Wittmann M, Bading H, Wittum G (2008) Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data. J Biomed Opt 13(1):014009

    Article  PubMed  Google Scholar 

  • Queisser G, Wiegert S, Bading H (2011) Structural dynamics of the cell nucleus. Nucleus 2(2):98–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryglewski S, Pflueger HJ, Duch C (2007) Expanding the neuron’s calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation. PLOS Biol 5(4):818–827

    Article  CAS  Google Scholar 

  • Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551(1):13–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17(1):190–203

    CAS  PubMed  Google Scholar 

  • Starovasnik MA, Su DR, Beckingham K, Klevit RE (1992) A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Protein Sci 1:245–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruption in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101

    Article  CAS  PubMed  Google Scholar 

  • Van Aelst L, Cline HT (2004) Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 14:297–304

    Article  PubMed  Google Scholar 

  • West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931

    Article  CAS  PubMed  Google Scholar 

  • Wittmann M, Queisser G, Eder A, Wiegert S, Bengtson CP, Hellwig A, Wittum G, Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29(47):14687–14700

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Grein S, Queisser G (2013) Employing NeuGen 2.0 to automatically generate realistic morphologies of hippocampal neurons and neural networks in 3D. Neuroinformatics 11:137–148

    Article  CAS  PubMed  Google Scholar 

  • Xylouris K, Queisser G, Wittum G (2010) A three-dimensional mathematical model of active signal processing in axons. Comput Visual Sci 13:409–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Queisser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Queisser, G. (2013). Transcriptional Control Dysfunction, Modeling. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_717-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_717-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics