Skip to main content

Local Field Potential in the Visual System

Encyclopedia of Computational Neuroscience

Definition

Low-frequency component of the continuous time-varying electrophysiological signal recorded using intracranial extracellular electrodes placed inside the visual cortex. It is dominated by local cooperative activity of neural networks occurring in a volume of tissue around the tip of the electrode.

Detailed Description

Biophysical Origin

It is thought that the main contribution to the local field potential (LFP) derives from synchronous activation of neurons in the surrounding cortex. The LFP represents the sum over typically many thousands of local electrical fields that are generated within individual neurons. When a neuron is activated by the arrival of an excitatory postsynaptic potential on its dendrite, charged ions pass through its membrane which normally acts as an electrical insulator (Eccles 1951). An inflow of positive ions is termed current sink by convention, whereas an outflow of positive ions is termed current source. Since inflowing positive ions must be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS (2008) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya A, Veit J, Kretz R, Bondar I, Rainer G (2013) Basal forebrain activation controls contrast sensitivity in primary visual cortex. BMC Neurosci 14:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  Google Scholar 

  • Cobb W, Sears TA (1960) A study of the transmission of potentials after hemispherectomy. Electroencephalogr Clin Neurophysiol 12:371–383

    Article  CAS  PubMed  Google Scholar 

  • Douglas RJ, Martin KA (2007) Recurrent neuronal circuits in the neocortex. Curr Biol 17:R496–R500

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC (1951) Interpretation of action potentials evoked in the cerebral cortex. Electroencephalogr Clin Neurophysiol 3:449–464

    Article  CAS  PubMed  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W et al (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60:121–130

    Article  CAS  PubMed  Google Scholar 

  • Fisch L, Privman E, Ramot M, Harel M, Nir Y et al (2009) Neural “ignition”: enhanced activation linked to perceptual awareness in human ventral stream visual cortex. Neuron 64:562–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  CAS  PubMed  Google Scholar 

  • Grothe I, Neitzel SD, Mandon S, Kreiter AK (2012) Switching neuronal inputs by differential modulations of gamma-band phase-coherence. J Neurosci 32:16172–16180

    Article  CAS  PubMed  Google Scholar 

  • Jewett DL, Williston JS (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94:681–696

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156

    Article  CAS  PubMed  Google Scholar 

  • Liebe S, Hoerzer GM, Logothetis NK, Rainer G (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 15:456–462, S1–S2

    Article  CAS  PubMed  Google Scholar 

  • Lima B, Singer W, Chen NH, Neuenschwander S (2010) Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb Cortex 20:1556–1573

    Article  PubMed Central  PubMed  Google Scholar 

  • Lima B, Singer W, Neuenschwander S (2011) Gamma responses correlate with temporal expectation in monkey primary visual cortex. J Neurosci 31:15919–15931

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971

    CAS  PubMed  Google Scholar 

  • Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Monosov IE, Trageser JC, Thompson KG (2008) Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field. Neuron 57:614–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12:70–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen KJ, Logothetis NK, Rainer G (2006) Dissociation between local field potentials and spiking activity in macaque inferior temporal cortex reveals diagnosticity-based encoding of complex objects. J Neurosci 26:9639–9645

    Article  CAS  PubMed  Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  CAS  PubMed  Google Scholar 

  • Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E et al (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30:11476–11485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci U S A 108:18453–18458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield EB, Kahana MJ (2006) Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol 95:1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592

    Article  CAS  PubMed  Google Scholar 

  • Silva LR, Amitai Y, Connors BW (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251:432–435

    Article  CAS  PubMed  Google Scholar 

  • Taylor K, Mandon S, Freiwald WA, Kreiter AK (2005) Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb Cortex 15:1424–1437

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA (2004) Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci 27:247–278

    Article  CAS  PubMed  Google Scholar 

  • Veit J, Bhattacharyya A, Kretz R, Rainer G (2011) Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex. J Neurophysiol 106:2303–2313

    Article  PubMed  Google Scholar 

  • Williams PE, Mechler F, Gordon J, Shapley R, Hawken MJ (2004) Entrainment to video displays in primary visual cortex of macaque and humans. J Neurosci 24:8278–8288

    Article  CAS  PubMed  Google Scholar 

  • Witham CL, Wang M, Baker SN (2007) Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex. Eur J Neurosci 26:2677–2686

    Article  PubMed Central  PubMed  Google Scholar 

  • Xing D, Yeh CI, Shapley RM (2009) Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29:11540–11549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xing D, Yeh CI, Burns S, Shapley RM (2012) Laminar analysis of visually evoked activity in the primary visual cortex. Proc Natl Acad Sci U S A 109:13871–13876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Rainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Rainer, G. (2014). Local Field Potential in the Visual System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_722-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_722-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Local Field Potential in the Visual System
    Published:
    21 June 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_722-2

  2. Original

    Local Field Potential in the Visual System
    Published:
    10 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_722-1