Skip to main content

Pathological Changes in Peripheral Nerve Excitability

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 183 Accesses

Definition

Reversing pathological changes in nerve excitability is an important clinical goal. Achieving that goal requires identification of the underlying molecular changes and a clear understanding of how excitability is altered on the basis of those changes. Computational modeling plays an important role in addressing those issues. One approach involves incorporating known or suspected ion channel changes into normal axon models to test whether such changes can explain pathological changes in excitability. An alternative approach involves reproducing the pathological changes in excitability and then working backward to identify which ion channel changes may be involved.

Detailed Description

Nerve Injury: From Clinical Symptoms to Molecular Pathology

Peripheral nerves comprise axons of sensory, motor, and autonomic neurons. The signs and symptoms of nerve injury reflect which of those axons are damaged. The most obvious consequence of nerve injury is a loss of normal function which,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amir R, Liu CN, Kocsis JD, Devor M (2002) Oscillatory mechanism in primary sensory neurones. Brain 125:421–435

    Article  PubMed  Google Scholar 

  • Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819

    Article  PubMed  Google Scholar 

  • Boucher PA, Joos B, Morris CE (2012) Coupled left-shift of Nav channels: modeling the Na(+)-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 33:301–319

    Article  PubMed  Google Scholar 

  • Bowe CM, Kocsis JD, Targ EF, Waxman SG (1987) Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers. Ann Neurol 22:264–268

    Article  CAS  PubMed  Google Scholar 

  • Calvin WH, Devor M, Howe JF (1982) Can neuralgias arise from minor demyelination? Spontaneous firing, mechanosensitivity, and afterdischarge from conducting axons. Exp Neurol 75:755–763

    Article  CAS  PubMed  Google Scholar 

  • Coggan JS, Prescott SA, Bartol TM, Sejnowski TJ (2010) Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proc Natl Acad Sci USA 107:20602–20609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kepler TB, Abbott LF, Marder E (1992) Reduction of conductance-based neuron models. Biol Cybern 66:381–387

    Article  CAS  PubMed  Google Scholar 

  • Kovalsky Y, Amir R, Devor M (2009) Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. J Neurophysiol 102:1430–1442

    Article  CAS  PubMed  Google Scholar 

  • LaCroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS (2011) Patterns of pain: meta-analysis of microarray studies of pain. Pain 152:1888–1898

    Article  PubMed  Google Scholar 

  • Liu CN, Devor M, Waxman SG, Kocsis JD (2002) Subthreshold oscillations induced by spinal nerve injury in dissociated muscle and cutaneous afferents of mouse DRG. J Neurophysiol 87:2009–2017

    PubMed Central  PubMed  Google Scholar 

  • Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prescott SA, De Koninck Y, Sejnowski TJ (2008) Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput Biol 4:e1000198

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratté S, Zhu Y, Lee KY, Prescott SA (2014) Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain. eLife in press

    Google Scholar 

  • Rho YA, Prescott SA (2012) Identification of molecular pathologies sufficient to cause neuropathic excitability in primary somatosensory afferents using dynamical systems theory. PLoS Comput Biol 8:e1002524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Prescott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Prescott, S.A. (2014). Pathological Changes in Peripheral Nerve Excitability. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_748-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_748-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics