Skip to main content

Ontology-Based Data Access and Integration

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems

Definition

An ontology-based data integration(OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF, editors. The description logic handbook: theory, implementation and applications. 2nd ed. Cambridge: Cambridge University Press; 2007.

    MATH  Google Scholar 

  2. Calì A, Gottlob G, Lukasiewicz T. A general datalog-based framework for tractable query answering over ontologies. J Web Semant. 2012;14(July):57–83.

    Article  Google Scholar 

  3. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R. Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J Autom Reason. 2007;39(3):385–429.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ceri S, Gottlob G, Tanca L. Logic programming and databases. Berlin: Springer; 1990.

    Book  Google Scholar 

  5. Chortaras A, Trivela D, Stamou GB. Optimized query rewriting for OWL 2 QL. In: Proceedings of the 23rd International Conference on Automated Deduction; 2011. p. 192–206.

    Google Scholar 

  6. Eiter T, Ortiz M, Simkus M, Tran T-K, Xiao G. Query rewriting for Horn-SHIQ plus rules. In: Proceedings of the 26th National Conference on Artificial Intelligence; 2012.

    Google Scholar 

  7. Gottlob G, Kikot S, Kontchakov R, Podolskii VV, Schwentick T, Zakharyaschev M. The price of query rewriting in ontology-based data access. Artif Intell. 2014;213(Aug):42–59.

    Article  MathSciNet  MATH  Google Scholar 

  8. Imielinski T, Lipski W Jr. Incomplete information in relational databases. J ACM. 1984;31(4):761–91.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kontchakov R, Lutz C, Toman D, Wolter F, Zakharyaschev M. The combined approach to ontology-based data access. In: Proceedings of the 22nd International Joint Conference on AI; 2011. p. 2656–61.

    Google Scholar 

  10. Leitsch A. The resolution calculus. Berlin: Springer; 1997.

    Book  MATH  Google Scholar 

  11. Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2002. p. 233–46.

    Google Scholar 

  12. Levy AY, Rousset M-C. Combining Horn rules and description logics in CARIN. Artif Intell. 1998;104(1–2):165–209.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pérez-Urbina H, Horrocks I, Motik B. Efficient query answering for OWL 2. In: Proceedings of the 8th International Semantic Web Conference; 2009. p. 489–504.

    Google Scholar 

  14. Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenzerini M, Rosati R. Linking data to ontologies. J Data Semant. 2008;X(3):133–73.

    Google Scholar 

  15. Rosati R, Almatelli A. Improving query answering over DL-Lite ontologies. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning; 2010. p. 290–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Calvanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R. (2018). Ontology-Based Data Access and Integration. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_80667

Download citation

Publish with us

Policies and ethics