Skip to main content

On Force-Based Modeling of Pedestrian Dynamics

  • Chapter
  • First Online:
Modeling, Simulation and Visual Analysis of Crowds

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

Abstract

A brief overview of mathematical modeling of pedestrian dynamics is presented. Hereby, we focus on space-continuous models which include interactions between the pedestrian by forces. Conceptual problems of such models are addressed. Side-effects of spatially continuous force-based models, especially oscillations and overlapping which occur for erroneous choices of the forces, are analyzed in a quantitative manner. As a representative example of force-based models the Generalized Centrifugal Force Model (GCFM) is introduced. Key components of the model are presented and discussed. Finally, simulations with the GCFM in corridors and bottlenecks are shown and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chattaraj, U., Chakroborty, P., Seyfried, A.: Empirical studies on pedestrian motion through corridors of different geometries. In: Proceedings of Transportation Research Board 89th Annual Meeting, CD Rom, Washington, D.C (2010)

    Google Scholar 

  2. Chraibi, M., Seyfried, A., Schadschneider, A.: The generalized centrifugal force model for pedestrian dynamics. Phys. Rev. E 82, 046111 (2010)

    Article  Google Scholar 

  3. Daamen, W., Hoogendoorn, S.: Capacity of doors during evacuation conditions. Procedia Eng. 3, 53–66 (2010)

    Article  Google Scholar 

  4. Fruin, J.J.: Pedestrian Planning and Design. Elevator World, New York (1971)

    Google Scholar 

  5. Hankin, B.D., Wright, R.A.: Passenger flow in subways. Oper. Res. Soc. 9(2), 81–88 (1958)

    Google Scholar 

  6. Helbing, D.: Collective phenomena and states in traffic and self-driven many-particle systems. Comput. Mater. Sci. 30, 180–187 (2004)

    Article  Google Scholar 

  7. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  8. Hirai, K., Tirui, K.: A simulation of the behavior of a crowd in panic. Syst. Control 21, 409–411 (1977)

    Google Scholar 

  9. Holl, S., Seyfried, A.: Hermes – an evacuation assistant for mass events. inSiDe 7(1), 60–61 (2009)

    Google Scholar 

  10. Hoogendoorn, S., Daamen, W.: Pedestrian behavior at bottlenecks. Transp. Sci. 39(2), 147–159 (2005)

    Article  Google Scholar 

  11. Gipps, P.G., Marksjö, B.: A micro-simulation model for pedestrian flows. Math. Comput. Simul. 27, 95–105 (1985)

    Article  Google Scholar 

  12. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. Theory Exp. 2006(10), P10014 (2006)

    Article  Google Scholar 

  13. Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 81(5), 339–352 (2005)

    Article  Google Scholar 

  14. Liddle, J., Seyfried, A., Klingsch, W., Rupprecht, T., Schadschneider, A., Winkens, A.: An experimental study of pedestrian congestions: influence of bottleneck width and length. ArXiv e-prints (2009)

    Google Scholar 

  15. Liddle, J., Seyfried, A., Steffen, B., Klingsch, W., Rupprecht, T., Winkens, A., Boltes, M.: Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations. ArXiv e-prints (2011)

    Google Scholar 

  16. Löhner, R.: On the modelling of pedestrian motion. Appl. Math. Model. 34(2), 366–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 276(1668), 2755–2762 (2009)

    Article  Google Scholar 

  18. Parisi, D.R., Dorso, C.O.: Morphological and dynamical aspects of the room evacuation process. Physica A 385(1), 343–355 (2007)

    Article  Google Scholar 

  19. Pauls J.L.: Suggestions on evacuation models and research questions. In: Shields, T.J. (ed.) Human Behaviour in Fire. Interscience Communications, London (2004)

    Google Scholar 

  20. Pauls J.L.: Stairways and Ergonomics. ASSE, Des Plaines (2006)

    Google Scholar 

  21. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  22. Reuschel, A.: Fahrzeugbewegungen in der Kolonne. Z. Öster. Ing. Arch. 4, 193–214 (1950)

    MATH  Google Scholar 

  23. Reuschel, A.: Fahrzeugbewegungen in der Kolonne bei gleichförmig beschleunigtem oder verzögertem Leitfahrzeug. Z. Öster. Ing. Arch. 59, 73–77 (1950)

    Google Scholar 

  24. Rissanen, J.: Minimum-description-length principle. In: Encyclopedia of Statistical Sciences. John Wiley & Sons, Inc., Hoboken (2004)

    Google Scholar 

  25. Schadschneider, A.: I’m a football fan ⋯ get me out of here. Phys. World 21, 21–25 (2010)

    Google Scholar 

  26. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Encyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  27. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems. From Molecules to Vehicles. Elsevier, Amsterdam (2010)

    Google Scholar 

  28. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43(3), 395–406 (2009)

    Article  Google Scholar 

  29. Seyfried, A., Schadschneider, A.: Empirical results for pedestrian dynamics at bottlenecks. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics. Volume 6068 of Lecture Notes in Computer Science, pp. 575–584. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  30. Seyfried, A., Steffen, B., Lippert, T.: Basics of modelling the pedestrian flow. Physica A 368, 232–238 (2006)

    Article  Google Scholar 

  31. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modelling and experiments. Physica A 391, 248–263 (2012)

    Article  Google Scholar 

  32. Templer, J.A.: The Staircase: Studies of Hazards, Falls, and Safer Design. MIT, Cambridge (1992)

    Google Scholar 

  33. Werner, T., Helbing, D.: The social force pedestrian model applied to real life scenarios. In: Galea, E.R. (ed.) Pedestrian and Evacuation Dynamics, pp. 17–26. CMS, London (2003)

    Google Scholar 

  34. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yanagisawa, D., Kimura, A., Tomoeda, A., Ryosuke, A., Suma, Y., Ohtsuka, K., Nishinari, K.: Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys. Rev. E 80(3), 036110 (2009)

    Article  Google Scholar 

  36. Yu, W.J., Chen, L.Y., Dong, R., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72(2), 026112 (2005)

    Article  Google Scholar 

  37. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech. (2011). doi:10.1088/1742-5468/2011/06/P06004

    Google Scholar 

  38. Zhang, J., Klingsch, W., Seyfried, A.: High precision analysis of unidirectional pedestrian flow within the Hermes project. In: The Fifth Performance-based Fire Protection and Fire Protection Engineering Seminars, Guangzhou, China (2010)

    Google Scholar 

  39. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. 2, P02002 (2012)

    Google Scholar 

  40. Zheng, X., Palffy-Muhoray, P.: Distance of closest approach of two arbitrary hard ellipses in two dimensions. Phys. Rev. E 75(6), 061709 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is within the framework of two projects. The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding the project under Grant-No. SE 1789/1-1 as well as the Federal Ministry of Education and Research (BMBF) for funding the project under Grant-No. 13N9952 and 13N9960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine Chraibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chraibi, M., Schadschneider, A., Seyfried, A. (2013). On Force-Based Modeling of Pedestrian Dynamics. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics