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Preface

In recent years, we are witnessing a data explosion: almost 90 % of today’s data have
been produced only in the last 2 years, with data being nowadays produced in the
order of Zettabytes! This data comes from various sources, including sensors, social
networking sites, mobile phone applications, electornic medical record systems and
e-commerce sites, just to name a few. Apart from its massive volume, this data is
also characterized by variety (heterogeneity) and velocity (streams of data).

Traditional approaches and algorithms are not able to process and analyze
such massive and complex datasets. This has signified the need for a paradigm
shift, where new hardware and software technology is emerging to efficiently
and reliably manage, store, process, analyze and synthesize very large amounts
of complex data generated by massively distributed data sources. Beside their
massively distributed nature, which requires new distributed architectures for data
analysis, the heterogeneity of such sources imposes significant challenges for the
efficient analysis of the data under numerous constraints, such as consistent data
integration, data homogenization and scaling, privacy and security preservation.
Moreover, the emerging real-world applications in domains such as healthcare,
weather forecasting, financial engineering, urban planning, traffic management and
environmental monitoring impose extra requirements for large-scale data analysis.

This edited book contains contributions on cutting edge research related to
large-scale data analytics in the following core areas: databases, data mining,
supercomputing, data visualization and privacy. Our goal is to present to students,
researchers, professionals and practitioners the state-of-the-art research, which will
help shape up the future of large-scale analytics, leading the way to the design
of new approaches and technologies that can analyze and synthesize very large
amounts of heterogeneous data, generated by massively distributed data sources.

Each chapter of the book presents a survey of an area in large-scale data
analytics, or individual results of the emerging research in the field. Chapters 1
and 2 are devoted to the MapReduce framework. In particular, the first chapter
provides a comprehensive survey for a family of approaches and mechanisms of
large scale data analysis that have been implemented based on the MapReduce
framework. Chapter 2 focuses on optimization approaches for plain MapReduce
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vi Preface

jobs, as well as for parallel data flow systems. Chapters 3 and 4 present two
important application areas of the MapReduce framework: mining tera-scale graphs
for patterns and anomalies (Chap. 3), and analyzing customer behavioral data for the
Telecom industry (Chap. 4). In Chap. 5, the authors describe a unified heterogeneous
architecture that integrates massively threaded shared-memory multiprocessors into
MapReduce-based clusters to enable executing Map and Reduce operators on
thousands of threads, across multiple GPU devices and nodes. The proposed hybrid
system can be used to accelerate machine learning algorithms, such as support
vector machines, achieving significant speedup. Chapter 6 is devoted to large-scale
social network analysis, offering a comprehensive survey of the state-of-the-art in
this area, with focus on parallel algorithms and libraries for the computation of
network centrality metrics. An overview of data visualization methods that help
users to gain insight into large, heterogeneous, dynamic textual datasets is provided
in Chap. 7. The last chapter of the book is devoted to technologies for offering
security and privacy at large scale. The authors of this chapter present a novel
framework for privacy-preserving, distributed data analysis that is practical for many
real-world applications.

We, as editors, are genuinely grateful to all contributors of this book for the time
and effort they put into this project, despite the heavy burden that we put on them.
We also owe special thanks to the effort of the external reviewers for their help in this
effort. Last but not least, we are indepted to Susan Lagerstrom-Fife and Courtney
Clark from Springer, for their great support towards the preparation and completion
of this work. Their editing suggestions were valuable to improving the organization,
readability and appearance of the manuscript.

Mulhuddart, Ireland Aris Gkoulalas-Divanis
Rüschlikon, Switzerland Abderrahim Labbi
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