
Chapter 7
Visual Analysis and Knowledge Discovery
for Text

Christin Seifert, Vedran Sabol, Wolfgang Kienreich, Elisabeth Lex,
and Michael Granitzer

Abstract Providing means for effectively accessing and exploring large textual
data sets is a problem attracting the attention of text mining and information
visualization experts alike. The rapid growth of the data volume and heterogeneity,
as well as the richness of metadata and the dynamic nature of text repositories, add to
the complexity of the task. This chapter provides an overview of data visualization
methods for gaining insight into large, heterogeneous, dynamic textual data sets.
We argue that visual analysis, in combination with automatic knowledge discovery
methods, provides several advantages. Besides introducing human knowledge and
visual pattern recognition into the analytical process, it provides the possibility to
improve the performance of automatic methods through user feedback.

7.1 Introduction

The already huge amount of electronically available information is growing further
at an astonishing rate: an IDC study [12] estimates that by 2006 the amount of digital
information exceeded 161 Exabyte, while an updated forecast [13] estimates that by
2012 the amount of information will double every 18 months. While retrieval tools
excel at finding a single, or a few relevant pieces of information, scalable analysis
techniques, considering large data sets in their entirety, are required when a holistic
view is needed.

Knowledge discovery (KD) is the process of automatically processing large
amounts of data to identify patterns and extract useful new knowledge [9].
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KD was traditionally applied on structured information in databases; however,
as information is increasingly present in unstructured or weakly structured form,
such as text, adequate techniques were developed. The shift from large, static,
homogeneous data sets to huge, dynamic, heterogeneous repositories necessitates
approaches involving both automatic processing and human intervention. Automatic
methods put the burden on machines, but despite algorithmic advancements
and hardware speed-ups, for certain tasks, such as pattern recognition, human
capabilities remain unchallenged.

Information visualization techniques rely on the powerful human visual sys-
tem, which can recognize patterns, identify correlations and understand complex
relationships at once, even in large amounts of data. Visualization is an effective
enabler for exploratory analysis [52], making it a powerful tool for gaining insight
into unexplored data sets.

Visual Analytics is an interdisciplinary field based on information visualization,
knowledge discovery and cognitive and perceptual sciences, which deals with
designing and applying interactive visual user interfaces to facilitate analytical
reasoning [50]. It strives for tight integration between computers, which perform
automatic analysis, and humans, which steer the process through interaction and
feedback. Combining the advantages of visual methods with automatic processing
provides effective means for revealing patterns and trends, and unveiling hidden
knowledge present in complex data [23,48]. Analytical reasoning is supported based
on the discovered patterns, where users can pose and test a hypothesis, provide
assessments, derive conclusions and communicate the newly acquired knowledge.

Especially for large text repositories, Visual Analytics is a promising approach.
Turning textual information into visual representations allows to access large doc-
ument repositories using the human pattern recognition abilities. Providing Visual
Analytics environments for text requires text mining and text analysis algorithms in
order to extract information and metadata. Further, appropriate representations have
to be devised in order to visualize the aspects interesting to the task at hand.

In this chapter, we provide an overview on visual analysis techniques for textual
data sets, outline underlying processing elements and possible application scenarios.
First, the general processing pipeline for Visual Analytics in text repositories
is outlined in Sect. 7.2, followed by a detailed description of all the necessary
steps. Second, Sect. 7.3 describes how visual representations can be used on the
extracted information. Different visualizations are represented depending on the
data aspect to be visualized. Section 7.3.1 describes topical overviews, Sect. 7.3.2
representations for multi-dimensional data, Sect. 7.3.3 spatio-temporal visualiza-
tions, and Sect. 7.3.4 visualization of arbitrary relations. The concept of user
feedback integration, as well as examples, are covered in Sect. 7.3.5. The concept of
combining multiple visualizations into one interface, as multiple coordinated views,
is explained in Sect. 7.3.6. Third, Sect. 7.4 describes three applications: media
analysis (Sect. 7.4.1), visual access to encyclopedias (Sect. 7.4.2) and patent analysis
(Sect. 7.4.3). Finally, Sect. 7.5 concludes the chapter and provides an outlook of
future developments in the field of Visual Analytics focusing on text data.
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Fig. 7.1 The processing pipeline for visual analysis of text combines data-intensive tasks (top)
and user-centric tasks (bottom). Solid black lines indicate data flows while dashed red lines indicate
user feedback to adapt automatic processes

7.2 Processing Pipeline for Visual Analysis of Text

Visual analytics combines information visualization techniques with knowledge
discovery methods in an iterative fashion. Starting from a given data set, mining
techniques identify interesting, non-trivial patterns, which may provide insights on
the data set. In a discovery task, where the aim is to identify new, potentially useful
insights, a priori assumptions underlying the mining techniques may not be fulfilled.
By visualizing the extracted patterns, humans are empowered to incorporate their
background knowledge into the automatic processes through identifying wrong
assumptions and erroneously identified patterns. Information visualization serves
as the communication channel between the user and the mining algorithm, allowing
domain experts to control the data-mining process, to rule-out wrong mining results
or to focus on particularly interesting sub-samples of the data set.

Providing Visual Analytics environments for text requires text mining and text
analysis algorithms, in order to extract meaningful patterns subject to visualization.
The data set usually consists of a set of documents and additional metadata.
Acquiring and processing these metadata is usually composed of consecutive steps
resembling the traditional knowledge discovery chain. Visual analytics aims to
provide users with intelligent interfaces controlling parts of these steps in order
to gain new insights. Understanding individual steps is necessary to derive suitable
visualizations and interactions for each step. Hence, we outline important details
on the process in the following and afterwards derive potential visualizations
and interactions for conducting visual analytics tasks in large text repositories.
Figure 7.1 depicts an overview of the outlined process.
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7.2.1 Acquisition

Acquisition includes crawling and accessing repositories to collect information, and
document pre-processing, such as harmonization of metadata and conversion into
a unified format. An often underestimated effort within the acquisition step is data
cleaning and metadata harmonization. Data cleaning involves removing documents
in awkward formats (e.g., encrypted PDFs) and data that should be omitted in
further processing (e.g., binary content). Similarly, metadata harmonization ensures
the correctness of data from various sources and the availability of necessary
information for later semantic integration [2].

7.2.2 Semantic Enrichment

Semantic enrichment extracts domain-specific semantics from single documents
and enriches each document with external knowledge. Usually, the process starts
with annotating the document content with linguistic properties like part-of-speech
or punctuation, or external knowledge like thesauri concepts. Annotated text then
serves as basis for either extracting explicit metadata on document level, e.g.,
the author of a document, or to generate features representing the document in
subsequent analysis steps. Annotations, metadata and features may serve as input
for creating index structures to enable fast, content-based access to documents.
Figure 7.2 provides an overview on these data transformations happening during
semantic enrichment. In the following, we outline the most important techniques in
detail.

7.2.2.1 Information Extraction

Information Extraction (IE) deals with extracting structured information from
unstructured, or weakly structured, text documents using natural language process-
ing methods [20]. IE decomposes text into building blocks, generates annotations
and extracts metadata, typically employing the following methods:

(i) Tokenization, sentence extraction and part-of-speech (POS) tagging (i.e. rec-
ognizing nouns and verbs)

(ii) Named entity recognition identifies entities such as persons, organizations,
locations, numbers (e.g.,time, money amounts). Co-reference detection identi-
fies various spellings or notations of a single named entity.

(iii) Word sense disambiguation identifies the correct sense of a word depending on
its context.

(iv) Relationship discovery identifies relations, links and correlations.
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Fig. 7.2 Semantic enrichment steps starting at single artifacts, e.g., documents, news articles,
patents (left), and resulting in enriched representations in an index (center)

7.2.2.2 Feature Engineering and Vectorization

Feature engineering and vectorization uses IE results and document metadata to
identify, weight (e.g., TF-IDF), transform (e.g., stemming) and select (e.g., stop-
word filtering) features describing text documents. Features are represented as
feature vectors used by algorithms to compare documents and compute document
similarities. Multiple feature spaces (also referred to as feature name spaces) group
features of similar characteristic to describe different, potentially orthogonal aspects
of a document. For example, one feature space can capture all nouns, while a
second feature space can capture all extracted and pre-defined locations and a
third all persons. By separating feature spaces, subsequent algorithms can take
care of different feature distributions and consider different importance among
feature spaces depending on the analytical task at hand, as e.g., in [32]. Besides
data integration and cleaning, good feature engineering becomes the second most
important step in every Visual Analytics workflow and hence subject for being
steered in the analytical process.
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Table 7.1 Levels of and techniques used for semantic integration

Level

Schema Instance

Technique Declarative-
deductive

Shared vocabulary,
reasoning-based
integration

Shared identifiers (e.g. URIs),
rule-based transformation,
declarative languages and
identifier schemas

Statistical-
inductive

Similarity based on structure,
linguistic or data type

Similarity estimates based on entity
properties (e.g. clustering,
near-duplicate search)

7.2.2.3 Indexing

Indexing develops efficient index structures in order to search for documents
containing particular features, or sequences/annotations of features themselves.
Inverted indices, representing for each feature the list of occurrences in documents,
are among the most often used indexing structures for text. They exploit power law
distributions of features in order to allow efficient search and retrieval in text based
repositories [34].

7.2.2.4 Text Classification

Text classification employs supervised machine learning methods to organize
documents into a predefined set of potentially structured categories [40]. Classi-
fication can be seen as injecting structured knowledge via a statistical, inductive
process. Examples are assigning documents to topical categories, estimating genre
information or determining the sentiment of text passages.

7.2.3 Semantic Integration

Semantic integration aims at integrating information from different, potentially
decentralized information sources based on information provided by each source
and by previous semantic enrichment processes. With the advancement of decen-
tralized information systems, like the Web, semantic integration becomes a more
and more important topic. Semantic integration, also known as data fusion in
the database community [2], or ontology mediation in the Semantic Web com-
munity [3], takes place on two levels: the schema-level and the instance-level.
Orthogonal to the two levels, techniques used for integration can be distinguished
into declarative-deductive and statistical-inductive techniques (see Table 7.1 for an
overview).



7 Visual Analysis and Knowledge Discovery for Text 195

7.2.3.1 Schema Level

The schema level considers mappings of general concepts of objects, like for
example mapping the concept person in repository A to the concept people in
repository B. The mapping type relies on the available vocabulary and may range
from equality relations to complex part-of relations, depending on the language
used. Besides mapping schemas onto each other, schema integration targets the
creation of one general schema out of the source schemas. In any case, the result
is a shared schema across repositories.

7.2.3.2 Instance Level

The instance level considers mappings of instances of concepts or objects, like for
example identifying that person A is the same as person B. While instance-level
integration mostly focuses on de-duplication of single instances, more complex
cases, like for example determining the type of relationships between two concrete
persons, may also be estimated. In general, performance decreases with increasing
relationship complexity.

7.2.3.3 Declarative-Deductive Techniques

Declarative-deductive techniques provide mappings based on complex rule sets
which may take use of reasoning and/or shared vocabularies. For example, the
concept person in schema A is the same as people in schema B, since both are
parents to the disjunctive concepts man and women. Similarly, on the instance level,
the field name for the concepts may be the same as the joint field forename and
surname for the concept people in schema B. Hence, declarative rules allow to map
schemas and instances onto each other. However, declarative rules may not be able
to include fuzziness, like different spelling of concept names or aspects like similar
structures of concepts/instances.

7.2.3.4 Statistical-Inductive Techniques

Statistical-inductive techniques account the need for fuzzier matching criteria and
the capability to learn from example instances. For example, de-duplication of
instances – like identifying the set of unique persons from a set of persons – can be
solved by clustering instances according to some similarity measures. The identified
clusters constitute the unique persons. Similarly, near duplicate search can be used
to match a given instance to a set of unique instances, as for example in determining
identical web pages during crawling.

Along both dimensions – i.e., levels and techniques – visual analytics can support
the integration process by visualizing effects of declarative rules or by visualizing
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the relation of certain instances to each other. Visual feedback methods allow to steer
the integration process. Granitzer et al. [16] present an overview on such visually
supported semantic integration processes.

7.2.4 Selection and Aggregation

Semantic enrichment and integration prepare the underlying data set for further pro-
cessing. In order to reduce the number of documents subject to visual analysis, the
next step includes selecting a proper subset and/or aggregating multiple documents
to one single object.

7.2.4.1 Retrieval

Retrieval techniques perform the step of selecting appropriate subsets of documents.
Besides the capability to search for information in text and metadata, the scalability
and performance of modern retrieval techniques [34] enables feature-based filtering,
query-by-example and facetted browsing, with the goal to cover all relevant
documents for subsequent analysis. Aggregation and visualization methods can be
applied to analyze large results sets and drill-down to task specific aspects.

7.2.4.2 Unsupervised Machine Learning

Unsupervised machine learning, in particular clustering, determines groups of sim-
ilar documents based on the assumption that documents distribute over topics [55].
Groups of documents can be represented as one single data point to reduce the
amount of data-points for subsequent processing steps or to improve navigation.
Especially for navigation, summarizing clusters in a human readable way becomes
crucial. In general, summarizations consist of extracted keywords or a brief textual
description relevant to the cluster, created via summarization methods.

7.2.4.3 Summarization

Summarization methods compute a brief descriptive summary for one more docu-
ments in the form of representative text fragments or keywords. The summaries are
used as labels to represent the essence of a document or a document set. Exploiting
integrated metadata and structure between documents becomes essential in order to
improve summarization and keyword extraction, as shown in [29]. An overview of
different summarization methods can be found in [5].
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7.2.5 Visualization and Interaction

The processing steps discussed above return a set of relevant objects, including
features, annotations and metadata. As a next step, suitable visual layouts have to be
calculated. Text data is characterized by its high-dimensional, sparse representation,
which naturally leads to the application of ordination techniques.

7.2.5.1 Ordination

Ordination is a generic term describing methods for creating layouts for high-
dimensional objects based on their relationships. It can be seen as a subset
of dimensionality reduction techniques [11]. Dimensionality reduction methods
project the high-dimensional features into a lower-dimensional visualization space,
while trying to preserve the high-dimensional relationships. High-dimensional
relationships can be usually expressed by similarity or distance measures. The
produced layout is suitable for visualization and exploratory analysis. Other layout
generation techniques, such as graph layout methods [6], are used to create a
suitable visual layout for non-vector based structures, like typed graphs, temporal
processes, etc.

7.2.5.2 Interactive Visualization

Interactive visualizations form the heart of any visual analytics application. Interac-
tive components are used to visually convey information aggregated and extracted
from text, and to provide means for exploratory analysis along the lines of the visual
analytics mantra: “analyze first – show the important – zoom, filter and analyze
further (iteratively) – details on demand” [24]. Feedback provided by users when
interacting with visual representations can be fed into the previous stages of the
process in order to improve its overall performance.

Visualizations usually depend on the visualized data (e.g., set, tree, graphs) and
the task at hand (e.g., topical similarity, temporal development). In Sect. 7.3 we
provide a detailed overview on visualizations particularly suited for text.

7.2.6 Hypothesis Formulation and Analytics Workflow

One core difference between Information Visualization and Visual Analytics lies in
the support of analytical workflows and the generation and validation of hypothesis.
Both, workflows and hypotheses formulation, require support from the underlying
analytical process and serve as end-point towards the manipulation of all preceding
steps, like acquisition, enrichment, integration, etc.
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7.2.6.1 Hypothesis Generation

The visual representation of semantics in the data usually triggers new insights.
New insights result in the generation of new, potentially valid hypothesis on the
underlying data. For example, showing a distribution of topics in media over time
may trigger the hypothesis that two events are related to each other.

Usually hypothesis generation is done in the head of the analyst, rather than
making the validated hypotheses explicit. However, hypothesis generation depends
on already generated and validated hypothesis. Similar to the well known “Lost
in Hyperspace” effect, where users who browse the web via hyperlinks loose
their initial information need, implicit hypothesis generation bears the risk to
miss important, already validated facts. Hence, hypotheses and the decisions they
triggered should be made explicit within an analytical process in order to guide
the user. To the best of the authors knowledge this has not been done so far, but
well known mathematical models for decision making processes, like the Analytical
Hierarchical Process (AHP) [36], could be a first starting point therefore.

7.2.6.2 Hypothesis Validation

A generated hypothesis can be verified by the user. Depending on the required
manipulation of the underlying analytical process, validation may range from simple
interactions with the visual representation to crawling a completely new data set. For
example, to see that two events are related to each other one could simply select data
points related to both events and reveal their topical dependency. Hence, for efficient
support of analytical tasks flexible, powerful and easy to use task specific workflows
become important.

7.3 Visual Representations and Interactions on Text

Tight integration of visual methods with automatic techniques provides important
advantages. To name a few: (i) flexibility to interchangeably apply visual and
automatic techniques, as needed by the user, (ii) results of automatic text analysis,
such as extracted metadata or aggregated structures, open the way for applying
a wider variety of visualization techniques, which are not targeted exclusively to
text, and (iii) user feedback can be used to adjust and improve the models used
by automatic methods. Therefore, in this section we discuss visual representations,
which primarily target textual data, and also describe how visualizations, which do
not specifically target text, can be used when information is extracted from text
using methods described in the previous section.
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7.3.1 Topical Overview

Gaining an overview of important topics in a document set, and understanding
the relationships between these topics, is crucial when users are dealing with
large text repositories they are unfamiliar with. Tag clouds and information land-
scape are examples of visual representations which are designed to address these
requirements.

7.3.1.1 Tag Clouds

Tag clouds are a popular Web 2.0 visual representation consisting of terms or short
phrases which describe the content of a document or collection. Typically, keywords
or named entities (such as persons or organizations) are displayed, which were
extracted from document content using natural language processing methods (see
Sect. 7.2.2). Size, color and layout of the words are driven by their importance, as
well as by aesthetic and usability criteria [44].

In Fig. 7.3 a search result set is visualized by multiple tag clouds combined
into one visualization. Each tag cloud corresponds to one of the (pre-defined)
categories “sports”, “politics”, “europe”, “society”, “culture”. The central tag cloud
represents all documents of all categories. Each tag cloud shows the most important
named entities (persons, dates, locations) for the respective category, thus giving an
overview over the documents within. The polygonal boundaries for each tag cloud
are generated by applying Voronoi subdivision. The initial points for generating this
subdivision can either be set manually (as in the example figure) or can be the result
of a similarity layout of the category content (for an example, see [46]).

7.3.1.2 Information Landscapes

Information landscapes, such as In-SPIRE [27] and InfoSky [1], employ a geo-
graphic landscape metaphor for topical analysis of large document sets. Information
landscapes are primarily used for gaining an overview and for providing explorative
navigation possibilities. A user who is unfamiliar with the data set is empowered
to gain insight deep into the topical structure of the data, understand importance of
various topics, and learn about relationships between them. As opposed to searching
using queries, guided explorative navigation provides the possibility to identify
interesting information even when the user’s goals are vaguely defined.

In information landscapes documents are visualized as dots (icons), which are
laid out in such a way that similar items are positioned close together, while
dissimilar ones are placed far apart. Hills emerge where density of topically related
documents is high, indicating a topical cluster. Clusters are labeled by summaries of
the underlying documents, allowing users to identify areas of interest and eliminate
outliers. The height of a hill is an indicator for the number of documents and the



200 C. Seifert et al.

Fig. 7.3 A visualization showing a search result set as a combination of tag clouds. Each
polygonal area corresponds to a category of the documents in the search result set. Displayed
named entities are enhanced with symbols indicating their type (person, location, data)

compactness of the hill is an indicator of cluster’s topical cohesion. Topically similar
clusters can be identified as they will appear spatially close to each other, while
dissimilar clusters are separated by larger areas, visualized as sea. Aggregation
of the data set and its projection into the 2D space are computed using scalable
clustering and ordination algorithms, as for example described in [30, 38] (also
see Sects. 7.2.4 and 7.2.5). Advanced information landscape implementations can
handle data sets with far over a million documents. For such massive data sets
information retrieval techniques (see Sect. 7.2.4) can be used to provide fast filtering
and highlighting functionality.

Figure 7.4 shows navigation in an information landscape along a hierarchy of
topical clusters, which are visualized as nested polygonal areas. Cluster labels
provide a summary of the content of the underlaying documents and serve as
guidance for exploration. Following the labels on each level of the hierarchy, the
user can navigate the topical structure of the data and understand how clusters
relate in terms of topical similarity and size. On the top-left of the figure, an
overview of approximately 6,000 news articles on “computer industry” can be seen,
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Fig. 7.4 An information landscape showing approx. 6,000 news articles on “computer industry” is
used for drilling down to documents of interest: beginning with an overview (left) the user narrows
down using topical cluster labels (right)

subdivided into 7 topical clusters. Clicking on the label “intel, quarter, dell”, the
corresponding cluster is zoomed in and the sub-areas, corresponding to its sub-
clusters, are shown (top-right). Clicking on “compaq, dell, stores” (bottom-left)
and then on “dell, poweredge, server” (bottom-right) narrows further down to the
potential topic of interest. The cluster “poweredge, server, prices” (bottom-right)
contains only five document, which can be inspected manually by the user. Free
navigation by zooming (mouse-wheel) and panning (mouse-drag) is also available.
Selection of documents can be performed cluster-wise, individually or on arbitrary
subsets using a lasso tool.
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Fig. 7.5 Multidimensional visualization for books. Left: Scatterplot visualizing publication year
(x-axis), page count (y-axis), file size (icon size), author (icon type); right: parallel coordinates
showing nine metadata types on parallel axes

7.3.2 Multidimensional Metadata

Visualization of multidimensional metadata enables the discovery of correlations
between document metadata. Such metadata may include document size and source,
relevance to a search query (see Sect. 7.2.4), or extracted persons and organizations
(see Sect. 7.2.2).

7.3.2.1 Scatterplot

Scatterplot is a visual representation for analysis of multidimensional metadata,
mapping up to five different metadata types (dimensions) to the x and y axes, and
to visual properties (color, size, shape) of displayed items [21]. The main drawback
of a scatterplot is that it can correlate only a limited amount of dimensions.

7.3.2.2 Parallel Coordinates

The parallel coordinates representation [19] can handle a larger amount of dimen-
sions, which are displayed as parallel vertical axes. For each document, the variables
are displayed on their corresponding axes and connected with a polygonal line, so
that patterns can be spotted easily as lines having similar shapes. In addition, a
selected discrete property (e.g., class membership) can be mapped to the line color
to allow identification of differentiating features for different values of the property.

Figure 7.5 (left) shows a scatterplot displaying book metadata (publication
year, page count, file size, author). The scatterplot component builds upon the
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Prefuse Information Visualization Toolkit1 adding the capability to handle multiple
coordinated scatterplot views (see Sect. 7.3.6 for more information on multiple
coordinated views). By visualizing the same data set in two or more coordinated
scatterplots at the same time, it becomes possible to increase the number of
visualized dimensions above the typical five. A parallel coordinates visualization
in Fig. 7.5 (right), shows nine different types of metadata for e-books, with the line
style differentiating between publishers. It can be seen that the some e-books have
high ratings and high prices (dashed-dotted lines), some others are cheaper and have
lower ratings (continuous lines), while the remaining e-books are free and achieve
highest delivery rates (dotted lines).

7.3.3 Space and Time

Visualization of geo-spatial and temporal information is very important in many
applications. In what follows, we explain different approaches for producing such
visualizations and discuss ThemeRiver [17], a well-known visualization conveying
topical changes in large text repositories.

7.3.3.1 Visualization of Geo-Spatial Information

The visualization of geo-spatial information, as for example extracted locations,
is a natural fit for the application of various geo-visualization approaches [7].
A popular application of geo-visualization is to show automatically extracted spatial
information (see Sect. 7.2.2) on geographical maps [39] in order to reveal where
something is happening. Figure 7.6 shows a geo-spatial visualization of locations
extracted from German news articles [28]. The extracted locations are depicted on
a map of Austria as cones, where the size of a cone corresponds to the number of
news articles the location occurred in. Clicking on a cone triggers a filtering of the
news article set by the selected location, and thus this visualization can be used as a
faceted search tool.

Geo-spatial visualizations are not restricted to geographic maps; they can also
be applied in e.g., virtual 3D environments. An example is the planetarium that
has been integrated into an encyclopedia application [26], providing coordination
between browsing spatial (astronomic) references in text and navigation in the
virtual environment.

1http://prefuse.org/.

http://prefuse.org/
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Fig. 7.6 Geo-visualization of Austria showing geo-references in news articles (cones). The size
of the cone corresponds to the number of news articles for the particular geo-reference

7.3.3.2 Visualization of Temporal Information

The visualization of temporal information, such as document creation date or
automatically extracted time references (see Sect. 7.2.2), can be realized by a variety
of visual components. Although different in many aspects, visual representations for
temporal data usually share a common feature: they include a visual element which
symbolizes the flow of time. For example, temporal data can be visualized along a
straight line or along a spiral [54], both representing the flow of time. Although a
straight time axis is more common, a spiral time axis has the advantage of being
suitable for detecting cycles and recurring events, and it allows for displaying long
time intervals with high temporal resolution even on small screens.

7.3.3.3 ThemeRiver

ThemeRiver [17] is a well-known visualization conveying topical changes in large
text repositories. It uses a metaphor of flowing river streams to visualize trends
and changes in topical clusters, in the context of external events (see clustering
in Sect. 7.2.4). In addition to topical clusters, metadata clusters, for example
documents mentioning a specific location, can also be visualized. ThemeRiver
empowers users not only to understand trends but also to discover correlations and
causal relationships between clusters.

In Fig. 7.7 a stream visualization, which closely resembles the ThemeRiver,
shows temporal development of topical clusters for approximately 750 news
documents on “oil spill”. The x-axis symbolizes the flow of time, while the y-axis
conveys the amount of documents at a given moment in time. Each topical cluster is
represented by a stream of particular color, where the width of the stream along the
time axis correlates with the number of documents. By observing the development
of the “japan, tokyo, bay” topical cluster (second from bottom), which has two
distinctive peaks, it is obvious that temporal development of the “russia” metadata
cluster (bottom-most) correlates with the first peak, but not with the second.
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Fig. 7.7 A stream visualization of approx. 750 news documents on “oil spill”, showing temporal
development. Different gray values correspond to different topics

Naturally, a fusion of both spatial and temporal information in one visualization
also leads to interesting results. For example, the three-dimensional GeoTime [22]
visualization depicts a geographic map where the flow of time is orthogonal to
the map (i.e. on the z-axis). In this way GeoTime facilitates tracking of ground
movements over time and identification of activity hot-spots in both space and time.

7.3.4 Relationships

Relationships between concepts (e.g., keywords or named entities), identified
by methods such as co-occurrence analysis and disambiguation techniques (see
Sect. 7.2.3), are typically presented using graph visualizations [18]. For example,
PhraseNet [53] displays relationships between terms within a document, while
FacetAtlas [4] relies on faceted retrieval to visualize relationships between faceted
metadata. Relationships between aggregated structures (see Sect. 7.2.4), such as
document clusters, can be visualized by Cluster Maps [10]. It is a representation
similar to Venn and Euler diagrams, showing whether (and through which features)
different clusters overlap topically.

7.3.4.1 Graph Visualization

A graph visualization that is used to present relationships extracted from approxi-
mately 25,000 documents can be seen in Fig. 7.8. Concepts (keywords) are placed
in the 2D plane, depending on their interconnectedness, using a force-directed
placement method (see Sect. 7.2.5). An edge bundling technique [25] is applied to
reduce clutter, which would otherwise occur due to the high number of relationships.



206 C. Seifert et al.

Fig. 7.8 A graph visualization of relationships between concepts extracted from a text data set
(data courtesy of German National Library of Economics, 2011). Note that edge bundling is used
to improve clarity and reduce clutter in the edge layout

To preserve clarity even when visualizing larger graphs, a level-of-detail sensitive
algorithm decides which informations is displayed and which is hidden depending
on user focus and the current zoom level. To navigate, the user clicks on a concept
which triggers a zoom-in operation focusing that concept. Concepts close to the
chosen one are displayed in more details, revealing finer structures in the graph.

7.3.5 Visually Enhanced User Feedback

Analytical tasks require well-designed interaction mechanisms along with different
kinds of visualizations. Interactions can be grouped along three orthogonal dimen-
sions, namely (i) the kind of operation they perform, i.e., navigation, selection
and manipulation, (ii) the modality of the interaction, i.e., query, point-and-click,
language input, multi-touch, and (iii) its influence on the underlying analytical
process, i.e., the adaptation of data, parameters or the mining models themselves.
This subsection will briefly discuss (i) and (ii), and then focus on how interactions
can be used to steer the underlying analytical process.

7.3.5.1 Modalities of Interaction

Modalities of interaction depend mostly on the input devices. A search box can
be seen as “textual modality” which allows to filter relevant documents based on
keywords, provided either via keyboard or speech-to-text. Clearly, with the advance
of multi-touch devices new capabilities in expressing user needs become available.
While modalities of interaction influence the design of visualization and determine
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how interactions take place, they do not influence the possible operations on the
data and the steering capabilities on the analytics process. For a detailed overview
of different interaction modalities the reader is referred to [49].

7.3.5.2 Operations of Interactions

Operations of interactions describe the purpose of an interaction. Interactions to
navigate complex information spaces, to drill down on particular interesting patterns
and to switch between different perspectives, are the most common navigational
operations. Examples are browsing hyper-links or navigating a hierarchical structure
(see Fig. 7.4, left). Selection comprises operations that allow users to select data
points of interest and their properties. Examples include multi-selection in a list of
documents or lasso selection of data points in a similarity layout of documents (see
Fig. 7.4, top-right). Finally, manipulations form the essence of any visual analytics
application. Manipulative interactions, like removing certain data points from the
analysis or assigning a group of documents to a particular class, allow to steer the
underlying classification, clustering and retrieval processes.

7.3.5.3 Steering the Visual Analytics Process

Given interactions of different modalities and operations, the question remains how
the underlying process could be steered. In the following, we will discuss steering
on the data-point level and the model level.

Data-point level: On the data-point level, selecting a particular subset of data
points or a subset of data sources for the detailed analysis becomes the most
common form of influence. For example, Fig. 7.9 (left) shows a similarity layout
comparing search results from different search engines [51]. Sources could be
interactively added or removed in order to change the topical layout. Similarly, in
the landscape visualization shown in Fig. 7.4, a lasso selection can be used to select
a set of similar documents. This set could then be used as a positive set of examples
for training supervised classification algorithm.

Model level: On the model level, the goal is to control the underlying mining
model. The most direct form of controlling mining models is by setting parameters
directly, for example, the number of clusters or cost functions for positive or
negative classification errors. However, comprehension of resulting effects of direct
parameter manipulation becomes non-trivial especially for data-mining laymen.
Hence, we propose “direct manipulations” of mining models using visualizations.

The concept of direct manipulation greatly improved user interfaces of computers
by allowing users to directly manipulate information objects, like files and folders.
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Users have been empowered to drag and drop object instead of manipulating them
via a command line. In analogy, we give two examples on direct manipulation in
visual analytics.

Example 1. As a first example, consider again the landscape visualization shown
in Fig. 7.4. High-dimensional data points have been projected onto the 2D-plane
using clustering and ordination techniques. However, the high-dimensional distance
measure, and therefore the result of the projection, may not fit to the users
expectation of “distance” between documents. Some topics may be too close and
some too far away from each other. Instead of directly changing the distance
function or parameters of the ordination technique, the user could directly drag
topically similar data points closer to each other and dissimilar data-points further
apart, yielding user-determined distances between data points. By applying metric
learning techniques [14, 47] the user-determined similarity could be transformed
into a high-dimensional distance function in some kind of inverse projection [15].
The resulting high-dimensional distance function can be used in different mining
algorithms to reflect the user’s notion of “similarity” between documents.

Example 2. A second example concerns supervised machine learning models.
Interactions on a visual layout may be used two-fold: (i) to correct classification
errors or re-force correct classifications, and (ii) to generate new training data.
A visualization supporting these tasks requires the following properties: First, the
visualization should allow to judge problematic behavior of classification models,
like biases towards particular classes. Second, fast and easy identification of false
and/or problematic examples, e.g., outliers should be supported. Third, users should
be able to rapidly select and (re-)label examples. Further, if is preferable to have the
same kind of visualization, independently of the classification task and the employed
data classification algorithm.

The visualization proposed in [42, 43] satisfies these properties and has been
shown to support users in improving classification models [41]. Here, classes
are arranged around a circle. Data-points are placed in the interior of the circle
with their distances to every class being proportional to the a-posterior probability
that a data point belongs to that class (see Fig. 7.9, right). Data points can be
inspected, selected and dragged to the correct class resulting in re-training and
improving the underlying text classifier. A combined user interface employing this
visualization and an information landscape has further been shown applicable to
generate classifier hypothesis from scratch [45].

7.3.6 Multiple Visualization Interfaces

Complex analytic scenarios involve heterogeneous data repositories consisting of
different types of information. Visual representations are designed to target specific
aspects of the data, such as metadata correlations, topical similarity, temporal
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Fig. 7.9 Examples for visually enhanced feedback. Left: Search results (circles) for comparing
the topic overlap of different search engines (colors). Results with similar content are close.
Sources can be interactively added or removed. Right: Visualizing classification decisions. Classes
are arranged in a circle, data points are placed inside the circle according to their a-posteriori
probabilities. Decisions can be corrected by drag and drop, classifier is retrained

developments, geo-locations, etc. When simultaneous analysis of different informa-
tion types is required, user interfaces consisting of multiple visual components are
necessary. One way to address visual analysis of heterogeneous data is to integrate
various visualizations within a single immersive 3D virtual environment, such as
the Starlight System [35]. A more widely used approach is Coordinated Multiple
Views (CMV) [31]. Multiple view coordination is a technique for tightly coupling
multiple visualization components into a single coherent user interface, so that
changes triggered by interactions in one component are immediately reflected in
all others components.

Figure 7.10 shows a coordinated user interface, consisting of an information
landscape, a stream visualization, as well as of several other widgets, such as trees
and tables. The interface is used for “fused” analysis of topical, temporal and
metadata aspects of large text repositories [37]. The tree component, on the left,
shows the hierarchy of topical clusters providing a virtual table of contents. An
information landscape (see Sect. 7.3.1), on the right, visualizes document frequency
and topical similarity of clusters and documents. A stream view (see Sect. 7.3.3),
on the bottom, conveys temporal development of topical (and metadata) clusters.
Two additional components are available but are hidden in the screenshot: a faceted
metadata tree showing extracted persons, organizations and locations, and a table
providing detailed information on clusters and documents.

The coordination of components includes the following: (i) navigation in the
cluster hierarchy (triggered in any of the components), (ii) document selection
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Fig. 7.10 A coordinated multiple views GUI showing 6,900 news documents on “space”.
Document selection (by time: from June to August), document coloring (each topical cluster in
different color) and navigation in the hierarchy (location: Cluster 3 “shuttle, mars, columbia”) are
coordinated

(lasso-selection in the landscape, temporal selection in stream view, or cluster-wise
selection in the trees), (iii) document coloring (driven by the stream view color
assignments), and (iv) document icons (user-assignable from any component).

Coordination ensures that all views will focus on the same cluster, and that
document selection, colors and icons are consistent in all views. In this way, discov-
ery of patterns over the boundaries of individual visualizations becomes possible.
For example, topical-temporal analysis can be performed by selecting documents
belonging to two temporally separate events in the stream view, and then inspecting
in the landscape whether those documents are topically related or not. Moreover,
correlations between topical clusters and occurrences of a metadatum (e.g., persons)
can be identified by assigning different icons to documents mentioning different
persons, and then observing the distribution of these persons over topical clusters in
the landscape.
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7.4 Application Scenarios and Domains

Application scenarios for visual analysis and discovery in text repositories can be
identified in a wide range of domains. News media, encyclopedia volumes, scientific
paper repositories, patent databases or intelligence information systems, represent
an exemplary selection of domains to which the methods discussed in this chapter
have been beneficially applied. Given the diversity of application scenarios, we will
try to impose some structuring along relevant dimensions.

A first important dimension involves the target user group of a given application.
Clearly, the skill and experience level of the expected target user group should
influence the choice of visual means. Information Visualization and Visual Analytics
approaches usually focus on efficiency. This results in visual means which are
perfectly suitable for expert analysts, who have a high level of visual literacy and
domain knowledge. In contrast, Knowledge Visualization approaches [8] focus on
comprehensibility. The resulting visual means are often less efficient and flexible,
but can be utilized by a general audience.

A second dimension considers the amount of a priori information and context
available in a given application scenario. If information or context is available, for
example in the form of a formulated query or user profile information, an initial
search can limit the number of information items which have to be considered.
In this case, the visual analysis and manipulation of search results becomes the
prevalent task. In the absence of explicit information or context, explorative visual-
izations can enable the discovery of facts without having to explicate an information
need in advance. The following application scenarios provide a representative cross
section along this dimensions.

7.4.1 Media Analysis for the General Public

Media Analysis providers have traditionally shaped their services towards the
requirements of decision makers in enterprises and organizations. The advent of
the World Wide Web and the introduction of consumer-generated media has greatly
increased the amount of news sources available to a general audience. Media
consumers today find themselves assuming the role of media analysts in order to
satisfy personal information needs. News visualization has been a favored use case
for Information Visualization almost from the beginnings of this discipline [33].
However, in the spirit of the structure established above, visual support for this
application scenario should employ simple visual means and assume limited visual
literacy.

The Austrian Press Agency (APA) has provided a general audience with a number
of experimental news visualizations through its labs platform since 2008 [28].
From a technical point of view, the platform implements the pipeline architecture
outlined in this chapter. The acquisition stage relies on the PowerSearch media



212 C. Seifert et al.

Fig. 7.11 A visualization of occurrences of Austrian politicians in search results. A rendered
model of the parliament is used as visual metaphor. The figures of politicians are colored in their
party color and scaled relative to the occurrence count. Clicking on a figure narrows the search
result to articles containing the selected politician

database run by the company, which provides 180 Million news articles from
250 sources in a normalized manner. Semantic enrichment is facilitated through a
combination of rule-based and dictionary-based methods, which annotate persons,
locations and companies. Machine learning techniques are used to classify articles
into topical areas. Semantic integration is currently being addressed, for instance by
harmonizing identified persons with appropriate data sources from encyclopedias.
Retrieval is performed through a classical query-based interface, which provides
relevance-ranked search result lists.

The initial architecture has been tailored towards faceted filtering of large search
result sets. Given a query entered by a user, the system generates the result set and
displays a variety of visualizations, each of which represents a certain facet. For
instance, the occurrence of members of parliament and members of government in
a set of search results is visualized in a model of the Austrian parliament, as shown
in Fig. 7.11. Other visualizations include a geo-spatial view, a round table view of
prominent politicians and a tag cloud. All visualizations are very simple in design,
rely on metaphors to ease understanding and support a very simple interaction
scheme: Selecting a visual entity filters the result set to results containing the entity.
Experiments have shown that this kind of system is accessible to a general audience
without training.

An example visualization of more complex media analysis results is shown in
Fig. 7.12. Co-occurrence of key political figures extracted from a text corpus is
represented using a node-link-diagram in which links have been bundled to reveal
high-level patterns [25]. This kind of visualization favors an exploratory approach
which reveals general trends of the whole article set in the absence of a concrete
search query.
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Fig. 7.12 A visualization of co-occurrences of Austrian politicians in recent news media. Politi-
cians are displayed as nodes connected by links representing co-occurrence strength by line width.
Links are bundled to reveal high-level edge patterns. The strongest link visible is between the
chancellor and the vice-chancellor

7.4.2 Navigation and Exploration of Encyclopedias

Modern digital encyclopedias contain hundreds of thousands of textual articles and
multimedia elements, which constitute a knowledge space encompassing virtually
all areas of general interest. Traditional retrieval and discovery techniques in this
domain have included keyword search for articles and cross-reference based nav-
igation between articles. The German-language Brockhaus encyclopedia provides
a visualization system which enables the visual navigation of article context.
This three-dimensional Knowledge Space visualization presents topically related
articles, using figurative graphical elements as visual metaphors. The idea behind the
visualization is to support navigation between articles and to encourage exploration
of the encyclopedia in the spirit of edutainment.

The visualization shown in Fig. 7.13, displays the currently selected article at
the center of a disc divided into topical segments and arranges similar articles
around it. Relevant articles are placed close to the center and each article is
placed within the segment corresponding to its topic (chosen from a ten-item topic
scheme). Articles are represented by shapes according to type: cylinders represent
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Fig. 7.13 The “Knowledge Space” visualization displaying the context of the encyclopedia entry
for the mountaineer Reinhold Messner (center). The disc is divided into segments representing
topics (e.g., “society” in the front). Related articles are represented by objects placed on the
disc; shape, size and color encode additional metadata. For example, in the leftmost segment a
geographic article (circle) and a premium content article (diamond) about the Mountain Everest is
shown

factual articles, spheres represent geographic articles, cones represent biographic
articles and diamonds represent articles featuring premium content. Article labels
are displayed above the shapes. Dragging the mouse horizontally spins the disc
around its central axis. Dragging the mouse vertically adjusts zoom factor and
vertical view angle. Clicking on an object navigates to the corresponding article.

7.4.3 Patent Analysis and Comparison

The identification of prior art, and the discovery of patterns and trends in patents
constitutes a crucial aspect of business intelligence for innovative enterprises. The
raw data for this kind of analysis is readily available in the form of various
commercial and open patent databases. However, the actual information contained
in patents is very hard to analyze and understand. This phenomenon stems, in part,
from deliberate attempts to paraphrase key issues in order to maintain a competitive
advantage. Another reason for the complexity of patent information is the huge
amount of domain knowledge required to make sense of an actual patent, covering
a narrow technical aspect.
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The Austrian company m2n has created a patent analysis system which has been
used by various large enterprises, for instance by one of the largest global steel
manufacturers. This system displays patent data sets, acquired from a number of
configurable sources, in a multiple coordinated view environment, which integrates
textual and visual representations [37]. The visualization application includes an
information landscape, a temporal visualization and a number of other coordinated
views, similar to the user interface shown in Fig. 7.10. Referring to the structure
established above, this system clearly targets expert users which accept a large
amount of training in order to harvest all the benefits.

7.5 Conclusion and Outlook

Through combining visually supported reasoning with large scale automatic pro-
cessing, visual analytics opens new possibilities for exploration and discovery
of knowledge in text repositories. Aggregation and summarization are central to
scaling visualizations to very large data sets. Retrieval techniques enable filtering,
highlighting and selection on repositories of virtually unlimited size. Information
extraction opens the way for using visual representations which are not directly
related to text, such as geo-visualization or graph visualization. Finally, visualization
not only introduces human knowledge and visual pattern recognition into the
analytical process, but also provides the possibility to improve the performance of
automatic methods through consideration of user feedback.

While it is hard to deliver predictions on future development of the field, the
following directions appear promising: Triggered by the surge in use of smart
mobile devices and multi-touch interfaces, support for collaborative scenarios using
new input devices, such as tablets and multi-touch tables, is likely to gain traction.
On the algorithm side, the peculiarities of the emerging phenomenon of social
networks and social media, such as quality and trustworthiness of information, pose
new challenges. In the quest to handle ever larger data sets the efficient exploitation
of the cloud for computation and storage holds the promise of ultimate scalability.
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