
RESPONSIVE COMPUTER SYSTEMS: 
STEPS TOWARD FAULT-TOLERANT 

REAL-TIME SYSTEMS 



THE KLUWER INTERNATIONAL SERIES 
IN ENGINEERING AND COMPUTER SCIENCE 

REAL-TIME SYSTEMS 
Consulting Editor 

John A. Stankovic 

IMPRECISE AND APPROXIMATE COMPUTATION, by Swaminathan 
Natarajan, ISBN: 0-7923-9579-4 
FOUNDATIONS OF DEPENDABLE COMPUTING: System Implementation, 
edited by Gary M. Koob and Clifford G. Lau, 
ISBN: 0-7923-9486-0 
FOUNDATIONS OF DEPENDABLE COMPUTING: Paradigms for 
Dependable Applications, edited by Gary M. Koob and Clifford G. Lau, 
ISBN: 0-7923-9485-2 
FOUNDATIONS OF DEPENDABLE COMPUTING: Models and 
Frameworks for Dependable Systems, edited by Gary M. Koob and Clifford G. 
Lau, ISBN: 0-7923-9484-4 
THE TESTABILITY OF DISTRIBUTED REAL-TIME SYSTEMS, 
Werner SchUtz; ISBN: 0-7923-9386-4 
A PRACTITIONER'S HANDBOOK FOR REAL-TIME ANALYSIS: Guide 
to Rate Monotonic Analysisfor Rea~-Time Systems, Carnegie Mellon University 
(Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, Michale Gonzalez 
Harbour); ISBN: 0-7923-9361-9 
FORMAL TECHNIQUES IN REAL-TIME FAULT-TOLERANT 
SYSTEMS, J. Vytopil; ISBN: 0-7923-9332-5 
SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS, N. 
Halbwachs; ISBN: 0-7923-9311-2 
REAL-TIME SYSTEMS ENGINEERING AND APPLICATIONS, M. 
Schiebe, S. Pferrer; ISBN: 0-7923-9196-9 
SYNCHRONIZATION IN REAL-TIME SYSTEMS: A Priority Inheritance 
Approach, R. Rajkumar; ISBN: 0-7923-9211-6 
CONSTRUCTING PREDICTABLE REAL TIME SYSTEMS, W. A. 
Halang, A. D. Stoyenko; ISBN: 0-7923-9202-7 
FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specifications and 
Methods, A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9167-5 
FOUNDATIONS OF REAL-TIME COMPUTING: Scheduling and Resource 
Management, A. M. van Tilborg, G. M. Koob; 
ISBN: 0-7923-9166-7 
REAL-TIME UNIX SYSTEMS: Design and Application Guide, B. Furht, D. 
Grostick, D. Gluch, G. Rabbat, J. Parker, M. McRoberts, ISBN: 0-7923-9099-7 



RESPONSIVE COMPUTER SYSTEMS: 
STEPS TOWARD FAULT-TOLERANT 

REAL-TIME SYSTEMS 

edited by 

Donald S. Fussell 

The University of Texas at Austin 
Austin, Texas, USA 

Miroslaw Malek 

Humboldt-Universitiit 
Berlin, Germany 

SPRINGER SCIENCE+BUSINESS MEDIA, LLC 



Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available 
from the Library of Congress. 
ISBN 978-0-7923-9563-8 ISBN 978-1-4615-2271-3 (eBook) 
DOI 10.1007/978-1-4615-2271-3 

Copyright @ 1995 Springer Science+Business Media New York 
Originally published by Kluwer Academic Publishers in 1995 
All rights reserved. No part of this publication may be reproduced, stored in 
a retrieval system or transmitted in any form or by any means, mechanical, 
photo-copying, recording, or otherwise, without the prior written permission of 
the publisher, Springer Science+Business Media, LLC. 

Printed on acid-free paper. 



CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

PREFACE 

1 A TIGHT LOWER BOUND FOR PROCESSOR 
COORDINATION 
Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch and 

xi 

xv 

xvii 

Mark R. Tuttle 1 
1 Introduction 

2 Overview 

3 The Problem 

4 The Bermuda Triangle 
5 The Lower Bound 
6 Generalizing to the Partially Synchronous Model 
REFERENCES 

2 SELF-STABILIZING REAL-TIME DECISION 
SYSTEMS 
Marco Schneider 

1 Introduction 

2 Related Work 

3 A Model of Computation 

4 Definitions and Notation 

5 Terminating Self-Stabilizing Programs 

6 Boolean (Finite State) Programs 

2 

4 

7 
10 
13 

14 
16 

19 
19 
21 
22 
24 
26 
29 



vi 

3 

4 

5 

RESPONSIVE COMPUTER SYSTEMS 

7 Non-Terminating Self-Stabilizing Programs 

8 Self-Stabilization and Informed Decisions 

9 Acknowledgements 

REFERENCES 

MANAGEMENT AND SCHEDULING OF TESTS 
FOR LOCATING FAILURES DEPENDENT UPON 
OPERATION-TIME IN RESPONSIVE SYSTEMS 
Yu Lo Cyrus Chang and Leslie C. Lander 

1 Introduction 

2 Definitions and Notation 

3 Assignment and Scheduling of Multiple Test Sets 

4 The Analysis of Fault Location 

5 A priori information analysis 

6 Conclusion 

REFERENCES 

ADDING ROBUSTNESS IN DYNAMIC 
PREEMPTIVE SCHEDULING 
Giorgio C. Buttazzo and John A. Stankovic 

1 Introduction 

2 Terminology and Assumptions 

3 Schedulability analysis 

4 The RED scheduling strategy 

5 Performance Evaluation 

6 Related Work 

7 Conclusions 

REFERENCES 

STATIC DEADLOCK ANALYSIS FOR 
CSP-TYPE COMMUNICATIONS 
Peter B. Ladkin and Barbara B. Simons 

1 Introduction 

2 The Sequence Condition 

REFERENCES 

35 
40 

41 

43 

45 
46 
48 
52 
54 
56 
62 
62 

67 
67 
69 
71 

75 
78 
85 
87 
87 

89 
89 
96 

101 



Contents 

6 COMPARING HOW WELL ASYNCHRONOUS 
ATOMIC BROADCAST PROTOCOLS PERFORM 

Vll 

Flaviu Cristian, Richard de Beijer and Shivakant Mishra 103 
1 Introduction 103 

2 Assumptions 
3 Overview of Broadcast Protocols 

4 Simulation Results 

5 Relative Performance 

6 Conclusion 
REFERENCES 

7 HARD REAL-TIME RELIABLE MULTICAST IN 
THE DEDOS SYSTEM 
Dick Alstein and Peter van der Stok 

1 Introduction 
2 System architecture and failure assumptions 

3 Protocol description 
4 Protocol analysis 

5 Conclusion 

REFERENCES 

8 SPECULATIVE ALGORITHMS FOR 
CONCURRENCY CONTROL IN RESPONSIVE 
DATABASES 
Azer Bestavros 

1 Introduction 
2 RTDBMS Concurrency Control 

3 A Generic SeC-nS Algorithm 

4 SeC-NS Family Members 

5 Conclusion 

REFERENCES 

9 AUTONOMOUS TRANSACTION MANAGERS IN 
RESPONSIVE COMPUTING 

105 

106 

108 

119 

121 
122 

123 
123 
125 

127 

138 
140 
141 

143 
143 
146 
148 

160 

161 

162 

Nandit Soparkar, Henry F. Korth and Avi Silberschatz 167 

1 Introduction 168 



viii RESPONSIVE COMPUTER SYSTEMS 

2 System Structure and Notation 

3 Synchronization of the Local Schedules 

4 Effects of Transaction Aborts 

5 Synchronization of CSR Schedules 

6 A Pragmatic Restriction 

7 Further Observations 

8 Conclusions 

9 Appendix 

REFERENCES 

10ADAPTABLE FAULT TOLERANCE FOR 
REAL-TIME SYSTEMS 
A. Bondavalli) J. Stankovic and L. Strigini 

1 Introduction 
2 The Three-level Framework 
3 FERT Specification Language 

4 Support for Scheduling 

5 Conclusions and Discussion 
REFERENCES 

IlFAULT-TOLERANT AUTOMATIC CONTROL 
Marc Bodson) John Lehoczky) Ragunathan Rajkumar) Lui 

170 

172 

177 

178 

179 

181 

183 
184 

185 

187 

187 

189 
192 

200 

204 
207 

Sha and Jennifer Stephan 209 

1 Introduction to the Software Fault-Tolerance Problem 209 
2 The Simplex Architecture 211 

3 Laboratory Experiments 215 

4 Conclusion 

REFERENCES 

12DESIGN AND PERFORMANCE EVALUATION 
OF A FAULT-TOLERANT, HARD-REAL-TIME, 
PARALLEL PROCESSOR 
Bob Clasen) Rick Harper and Edward W. Czeck 

1 Introduction 

2 FTPP Overview 

3 Overview of FTPP Scheduling 

221 

223 

225 

226 

226 

228 



Contents 

4 

5 

6 

OS Performance Measurements 

NE Contention Model 

Conclusions 

REFERENCES 

INDEX 

ix 

235 
241 
246 
249 

251 



LIST OF FIGURES 

Chapter 1 

1 

2 

The Bermuda Triangle for 5 processors and a I-round protocol 
for 2-set agreement. 

A three-round communication graph. 

Chapter 2 

Chapter 3 

5 

9 

1 Self-diagnosable Responsive System 47 

2 Complete-graph Test Assignment 50 

3 1 Failed Unit, Correct Comparisons 51 

4 2 Failed Units, Erroneous Comparisons 52 

5 Graphs of the Probability of single vs multiple faults as time t 
increases (time unit = 1 MTBF), taking A = 1, a = 1, n = 6 61 

6 Graphs of the Probability of single vs multiple faults as time t 
increases (time unit = 1 MTBF), taking A = 1, a = 2, n = 6 61 

Chapter 4 

1 

2 

RED Guarantee Algorithm. 

RED Scheduling Block Diagram. 

Chapter 5 

1 Processes A, B, and C 

Chapter 6 

1 

2 

Communication delay density 

Delivery time (PA) 

76 
78 

90 

106 

109 



xii RESPONSIVE COMPUTER SYSTEMS 

3 Delivery time (PA) 109 

4 # of messages per broadcast (PA) 110 
5 # of messages per broadcast; 1 msg loss per broadcast (PA) 110 
6 Delivery time; 1 msg loss per broadcast (PA) 111 

7 Delivery time; 1 msg loss per broadcast (PA) 111 

8 Deiivery time (Amoeba) 111 

9 Delivery time (Amoeba) 111 
10 Delivery time; 1 msg loss per broadcast (Amoeba) 112 

11 Delivery time; 1 msg loss per broadcast (Amoeba) 112 
12 # of messages per broadcast (Amoeba) 113 
13 # of messages per broadcast; 1 msg loss per broadcast (Amoeba) 113 
14 Delivery time (Train) 114 
15 Delivery time; 1 msg loss per broadcast (Train) 114 

16 Delivery time (Train) 115 
17 Delivery time; 1 msg loss per broadcast (Train) 115 
18 # of messages per broadcast (Train) 116 
19 # of messages per broadcast; 1 msg loss per broadcast (Train) 116 

20 Delivery time (Isis) 117 
21 Delivery time (Isis) 117 
22 Delivery time; 1 msg loss per broadcast (Isis) 117 
23 Delivery time; 1 msg loss per broadcast (Isis) 117 
24 # of messages per broadcast (Isis) 118 
25 # of messages per broadcast; 1 msg loss per broadcast (Isis) 118 

Chapter 7 

1 Timing diagram of a typical send operation with timestamp 1". 130 

2 Timing diagram of a typical receive operation starting at time t. 131 

Chapter 8 

1 Legend for symbols used in illustrations throughout this article. 146 

2 Example oftransaction management under a basic OCC algorithm. 147 

3 Example of transaction management under the OCC-BC algo-
rithm. 147 

4 An undeveloped potential conflict. 148 

5 A developed conflict. 148 



List of Figures XUl 

6 
7 
8 

9 

10 

11 

12 

13 

Tl detects conflict (T3, X) after T3 writes X. 

Tr is forked off the BestShadow (Tl' X), Tf. 

151 

153 

TI, which accounts for the (T2' Z) conflict, is aborted and re
placed by Tf when an earlier conflict, (T2' X), with T2 is detected. 154 
Detecting conflict (T2' X) causes the abortion of LastShadow(T1 ) 

(Tn, and its replacement by Tf. 155 
Tf, accounting for the developed conflict (T2' X), is promoted 
to replace the optimistic shadow of T1 . Tf is aborted, while Tf 
remains unaffected. 155 

When the unaccounted-for conflict (T2' Z) materializes, a new 
optimistic shadow for Tl is forked off the LastShadow(TI), T?- 156 

The SCC-nS Algorithm. 157 

The LastShadow and BestShadow Functions used in SCC-nS. 158 

14 Average number of missed deadlines for OCC-BC vs. SCC-2S 159 
15 Average tardiness for OCC-BC vs. SCC-2S 159 

Chapter 9 

1 

2 
3 

MDBS Structure 
Overlapped synchronization intervals 
Impossible cycle with the synchronization protocol 

Chapter 10 

1 Structure of a FERT. 

Chapter 11 

1 

2 

3 

4 

Software Architecture 
Ball and Beam: Unrecoverable Region 
Ball and Beam - Recovery at High Speed 

Ball and Beam - Recovery from Fuzzy Logic Controller 

Chapter 12 

1 

2 

3 

FTPP Physical Architecture 

FTPP Virtual Configuration 

FTPP Abstract Structure 

171 
174 
176 

193 

213 
219 
220 
221 

231 

232 

232 



xiv RESPONSIVE COMPUTER SYSTEMS 

4 Architecture of Rate Group (RG) Frames on a Virtual Group 
(VG) 233 

5 Rate Group Frame - Programming Model 233 
6 Overview of Minor Frame 234 
7 Performance Measurement Setup 236 

8 Message Packet Processing 244 

9 Phasing Among PEs 245 

10 Effect of Varying Number of Packets and Phasing on Time to 
Send Message Packets 247 

11 Effect of Varying Number of PEs and Phasing on Time to Send 
Message Packets 247 

12 Effect of Varying Process Packet Time and Transfer Packet Time 
on Time to Send Message Packets 248 

13 Effect of Varying Process SERP Time and Transfer Packet Time 
on Time to Send Message Packets 248 

14 Effect of Reducing Each Default Parameter by 50% on Time to 
Send Message Packets 249 



LIST OF TABLES 

Chapter 1 

Chapter 2 

Chapter 3 

1 Case of an n-unit system with a = 1 

2 Case of an n-unit system with A = 1 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

1 Performance characteristics of the protocols. 

Chapter 8 

Chapter 9 

Chapter 10 

Chapter 11 

60 
66 

138 



XVI RESPONSIVE COMPUTER SYSTEMS 

Chapter 12 

1 

2 

3 
4 

Execution Time for RG Dispatcher - First Part 

Execution Time for RG Dispatcher - Second Section 

Execution Time of the Local FDIR Task 
Example Operating System Overheads 

240 
240 
240 
240 



PREFACE 

Modern computer systems are rapidly evolving into a highly integrated global 
network which serves as the repository of ever larger amounts of information 
critical to the social infrastructure. At the same time, a increasing fraction of 
the general public is becoming familiar with, and dependent upon, computers 
in the home. As this evolution continues, there is a growing need for computing 
environments that can be relied upon to provide timely responses to demands 
for information and service. 

For some time now, a great deal of attention has been paid to the design of 
fault-tolerant computers for special, mission-critical applications. In parallel, 
much research has been devoted to methods for designing real-time systems, 
which again are usually intended for specialized applications. While some of 
these applications demand highly reliable real-time service guarantees, for the 
most part research on the design of real-time computer systems and fault
tolerant computers has progressed independently. However, with increasing 
societal dependence on computers for everyday operation, the integration of 
fault-tolerance and real-time capabilities into new generations of computer sys
tems has become a significantly more important issue in systems design. We 
believe that the time has come for the development of a discipline of responsive 
systems design, by which we mean the design of systems optimized to meet 
demands for reliable and timely service. 

While many approaches to the design of reliable systems have been developed, 
all of them share one characteristic in common - they rely on replication of re
sources in some way to achieve high reliability. Thus, the advent of widespread 
parallel and distributed computing has been greeted as the basis of a new gen
eration of computing systems which use redundancy to achieve high reliability. 
To date, however, the reality in most parallel and distributed systems has been 
quite the reverse of this hope. The typical user of a distributed client-server 
environment actually experiences less reliable service than was provided by a 
time-shared mainframe or minicomputer in previous years. This is because each 
user of such a system typically relies on a reasonably large number of individual 
computers for his overall service needs. In many current environments, the fail-



xviii RESPONSIVE COMPUTER SYSTEMS 

ure of anyone of these machines brings down the user's environment. While 
each machine may be more robust than its counterparts of previous genera
tions, with overall system designs which ignore fault-tolerance, the probability 
that the user sees a functional system declines exponentially with the number 
of machines on which he is dependent. 

A similar situation exists with respect to the use of parallelism in the design 
of high-performance machines to meet severe real-time constraints. A parallel 
system may in principle be able to provide a performance level necessary to 
the achievement of a real-time constraint beyond the performance limits of any 
sequential system. Since parallel systems are significantly more complex and 
harder to program than sequential systems, however, it is harder to realize their 
performance potential in practice. Moreover, there is a significantly greater op
portunity for asynchronous, non-deterministic, or other unpredictable behavior 
in parallel or distributed computing systems, which makes it much harder to 
guarantee that a real-time constraint will always be met. 

Thus we have the situation at present that, while the technology of parallel 
and distributed computing contains within it precisely the raw material needed 
for the design of responsive systems, it is most often the case in current sys
tem designs that responsiveness is actually harder to achieve than in sequential 
systems in spite of this potential. It is a significant challenge to convert the 
potential of modern, parallel and distributed computing environments into re
alized responsive computing systems. Developing a discipline of responsive 
systems design will require integrating the theory and practice of real-time sys
tems, fault-tolerant computing, and parallel and distributed processing into a 
whole which is more than the sum of its parts. 

In order to take the first steps in this direction, we must begin with a clearer 
understanding of the goal and the costs of achieving it. Much of the reason 
that current distributed systems for non-critical applications are so unreliable 
is that they have been designed to maximize raw benchmark speeds while min
imizing the cost of storage and processing power. Thus, disks are not used 
to hold replicated copies of data; processors are not employed to back up the 
functions of others. The cost to the user of downtime is not usually considered 
in the design of these systems; hence efforts to minimize costs can adversely 
affect reliability. Any use of redundancy that might entail performance costs is 
considered harmful using this metric. Thus, if we are to undertake a discipline 
of responsive systems design, we must begin by recognizing the value of system 
availability and finding a way to measure it against the values of other system 
capabilities such as performance level and storage capacity. 



Preface XIX 

We must in the same vein modify our notion of how to evaluate performance. 
Raw benchmark speed must be deemphasized and replaced with a valuation 
based on the expectation of the timeliness of the responses that a system will 
typically provide to its users. System resources beyond those required to pro
vide timely responses should preferentially be used for greater system reliability 
or availability then for increasing raw performance as is typically the case today. 
Overall, then, we need a measure of system value in terms of responsiveness 
that lets us make design decisions regarding how system resources are to be 
used to provide the highest level of responsiveness at a given cost level, or al
ternatively the lowest cost for a given level of responsiveness. We then need to 
develop methodologies for designing systems and algorithms that will allow us 
to satisfy reliability and timeliness requirements in a flexible and efficient way. 

Given the complexity of modern computing systems and the ambitious goals 
of responsive systems design, a wide variety of issues will need to be resolved 
before these goals can be achieved. For example, how can we meet high level 
specifications with respect to fault tolerance and timeliness, or, in fact, how do 
we even specify these requirements? How do we express and estimate bounds 
on computation time? What models should be used to desribe the system? 
What methods should be used to prove that a design or an implementation 
meet a responsiveness specification? What language, operating system and ar
chitecture paradigms would be most appropriate? How do we design algorithms 
and programs that behave responsively? 

In the present volume, which contains twelve papers selected from the Second 
International Workshop on Responsive Computer Systems that took place in 
Lincoln, New Hampshire on September 28-30, 1993, you will find some initial 
steps toward answering these and related questions. 

Donald S. Fussell 
Miroslaw Malek 


