Skip to main content

Making a Low-Dimensional Representation Suitable for Diverse Tasks

  • Chapter
Book cover Learning to Learn

Abstract

We introduce a new approach to the training of classifiers for performance on multiple tasks. The proposed hybrid training method leads to improved generalization via a better low-dimensional representation of the problem space. The quality of the representation is assessed by embedding it in a 2D space using multidimensional scaling, allowing a direct visualization of the results. The performance of the approach is demonstrated on a highly nonlinear image classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baxt, W. G. and White, H. (1995). Bootstrapping confidence intervals for clinical input variable effects in network trained to identify the presence of acute myocardial infraction. Neural Computation, 7(3): 624–638.

    Article  Google Scholar 

  • Baxter, J. (1995). Learning internal representations. In Proc. COLT’95.

    Google Scholar 

  • Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Borg, I. and Lingoes, J. (1987). Multidimensional Similarity Structure Analysis. Springer, Berlin.

    Book  Google Scholar 

  • Breiman, L. (1992). Stacked regression. Technical Report TR-367, Department of Statistics, University of California, Berkeley.

    Google Scholar 

  • Breiman, L. (1994). Bagging predictors. Technical Report TR-421, Department of Statistics, University of California, Berkeley.

    Google Scholar 

  • Brigham, J. C. (1986). The influence of race on face recognition. In Ellis, H. D., Jeeves, M. A., and Newcombe, F., editors, Aspects of face processing, pages 170–177. Martinus Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • Caruana, R. (1993). Multitask connectionist learning. In Proceedings of the 1993 Connectionist Models Summer School, pages 372–379, San Mateo, CA.

    Google Scholar 

  • Caruana, R. (1995). Learning many related tasks at the same time with backpropagation. In Tesauro, G., Touretzky, D., and Leen, T, editors, Advances in Neural Information Processing Systems, volume 7, pages 657–664. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Cutzu, F. and Edelman, S. (1995). Explorations of shape space. CS-TR 95-01, Weizmann Institute of Science.

    Google Scholar 

  • Edelman, S. (1995a). Representation of similarity in 3D object discrimination. Neural Computation, 7:407–422.

    Article  Google Scholar 

  • Edelman, S. (1995b). Representation, Similarity, and the Chorus of Prototypes. Minds and Machines, 5:45–68.

    Article  Google Scholar 

  • Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Chapman and Hall, London.

    MATH  Google Scholar 

  • Gasser, M. (1995). Transfer in a connectionist model of the acquisition of morphology.CogSci TR 147, Indiana University, Bloomington, IN. an expanded version of a paper presented at the Morphology Workshop, Nijmegen, June 13, 1995.

    Google Scholar 

  • Grossman, T. and Lapedes, A. (1993). Use of bad training data for better prediction. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems, volume 6, pages 342–350. Morgan Kaufmann.

    Google Scholar 

  • Hintzman, D. L. (1994). Twenty-five years of learning and memory: was the cognitive revolution a mistake? In Umiltá, C. and Moscovitch, M., editors, Attention and Performance, volume XV, chapter 16, pages 360–391. MIT Press.

    Google Scholar 

  • Hofmann, T. and Buhmann, J. (1994). Multidimensional scaling and data clustering. In J. D. Cowan, G. T. and Alspector, J., editors, Neural Information Processing Systems, volume 7, pages 459–466. Morgan Kaufmann.

    Google Scholar 

  • Huber, P. J. (1985). Projection pursuit (with discussion). The Annals of Statistics, 13:435–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Intrator, N. (1993). Combining exploratory projection pursuit and projection pursuit regression with application to neural networks. Neural Computation, 5(3):443–455.

    Article  Google Scholar 

  • Intrator, N. and Cooper, L. N. (1991) Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks, 5, 3–17

    Article  Google Scholar 

  • Kramer, A. F., Strayer, D. L., and Buckley, J. (1990). Development and transfer of automatic processing. Journal of Experimental Psychology: Human Perception and Performance, 16:505–522.

    Article  Google Scholar 

  • Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1): 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Lando, M. and Edelman, S. (1995). Receptive field spaces and class-based generalization from a single view in face recognition. Network, 6:551–576.

    Article  Google Scholar 

  • LeBlanc, M. and Tibshirani, R. (1994). Combining estimates in regression and classification. Preprint.

    Google Scholar 

  • Logan, G. (1988). Towards an instance theory of automatization. Psychological Review, 95:492–527.

    Article  Google Scholar 

  • Maddox, W. T. and Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception and Psychophysics, 53:49–70.

    Article  Google Scholar 

  • Martin, G. (1988). The effects of old learning on new in hopfield and backpropagation nets. Technical Report ACA-HI-019, Microelectronics and Computer Technology Corporation (MCC).

    Google Scholar 

  • McLaren, I. P. L., Leevers, H. J., and Mackintosh, N. J. (1994). Recognition, categorization, and perceptual learning (or, how learning to classify things together helps one to tell them apart). In Umiltá, C. and Moscovitch, M., editors, Attention and Performance, volume XV, chapter 35, pages 889–909. MIT Press.

    Google Scholar 

  • Murre, J. M. J. (1995). Transfer of learning in backpropagation networks and in related neural network models. In Levy, Bairaktaris, Bullinaria, and Cairns, editors, Connectionist Models of Memory and Language. UCL Press, London. To appear.

    Google Scholar 

  • Pickover, C. (1990). Computers, Pattern, Chaos, and Beauty. St. Martin’s Press.

    Google Scholar 

  • Pratt, L. Y. (1993). Transferring previously learned back-propagation neural networks to new learning tasks. Technical report ml-tr-37, Rutgers University, CS Dept.

    Google Scholar 

  • Price, D., Knerr, S., Personnaz, L., and Dreyfus, G. (1995). Pairwise neural network classifiers with probabilistic outputs. In G. Tesauro, D. S. T. and Leen, T. K., editors,Advances in Neural Information Processing 7, pages 1109–1116. MIT Press.

    Google Scholar 

  • Raviv, Y. and Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique. Connection Science, Special issue on Combining Estimators, 8:356–372.

    Google Scholar 

  • Reder, L. and Klatzky, R. L. (1994). Transfer: training for performance. In Druckman, D. and Bjork, R. A., editors, Learning, remembering, believing: enhancing human performance, chapter 3, pages 25–56. National Academy Press, Washington, DC. Also available as TR CMU-CS-94-187; The effect of context on training: is learning situated?

    Google Scholar 

  • Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Trans. Compute18:401–409.

    Article  Google Scholar 

  • Sas (1989). SAS/STAT User’s Guide, Version 6. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Shepard, R. N. (1966). Metric structures in ordinal data. J. Math. Psychology, 3:287–315.

    Article  Google Scholar 

  • Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210:390–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237:1317–1323.

    Article  MathSciNet  MATH  Google Scholar 

  • Simard, P., Victorri, B., LeCun, Y., and Denker, J. (1992). Tangent prop-a formalism for specifying selected invariances in an adaptive network. In Moody, J., Lippman, R., and Hanson, S. J., editors, Neural Information Processing Systems, volume 4, pages895–903. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Royal Statistics Society B, 36:111–147.

    MATH  Google Scholar 

  • Thrun, S. and Mitchell, T. (1995). Learning one more thing. In Mellish, C., editor, Proc. 14th IJCAI, volume 2, pages 1217–1223, San Mateo, CA. Morgan Kaufmann.

    Google Scholar 

  • Young, G. and Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3:19–22.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Intrator, N., Edelman, S. (1996). Making a Low-Dimensional Representation Suitable for Diverse Tasks. In: Thrun, S., Pratt, L. (eds) Learning to Learn. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5529-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5529-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7527-2

  • Online ISBN: 978-1-4615-5529-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics