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Preface 

There are many kinds of books on formal logic. Some have philosophers 
as their intended audience, some mathematicians, some computer scien
tists. Although there is a common core to all such books, they will be 
very different in emphasis, methods, and even appearance. This book 
is intended for computer scientists. But even this is not precise. Within 
computer science formal logic turns up in a number of areas, from pro
gram verification to logic programming to artificial intelligence. This 
book is intended for computer scientists interested in automated theo
rem proving in classical logic. To be more precise yet, it is essentially 
a theoretical treatment, not a how-to book, although how-to issues are 
not neglected. This does not mean, of course, that the book will be of no 
interest to philosophers or mathematicians. It does contain a thorough 
presentation of formal logic and many proof techniques, and as such it 
contains all the material one would expect to find in a course in formal 
logic covering completeness but, not incompleteness issues. 

The first item to be addressed is, What are we talking about and why 
are we interested in it? We are primarily talking about truth as used 
in mathematical discourse, and our interest in it is, or should be, self
evident. Truth is a semantic concept, so we begin with models and their 
properties. These are used to define our subject. 

The second issue is how we, as limited human beings, can know what is 
true. For this we have a device called a proof Many formal proof pro
cedures have been developed over the years: axiom systems, natural de
duction, tableaux, resolution. We present several of these and show how 
they are used. Of course, the connections between these proof procedures 
and truth must be established. We need what are called soundness and 
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completeness results. Ours are demonstrated in a uniform way for all 
the systems we consider. Thus, we are able to discuss many formal proof 
procedures without doing much more work than if we had only discussed 
one. 

Finally, how can we get a machine--a computer-to use one of our 
proof procedures? When we human beings prove things, we bring all 
our insight and experience to bear, not to mention the wisdom of the 
past stored up in books. We are still learning how to give machines such 
knowledge. Generally, we must be satisfied if we can give a computer 
a simple-minded recipe by which it can find proofs, even though the 
proofs may not be very clever. So, which of the formal proof procedures 
that humans have developed will allow themselves to be applied blindly, 
mechanically? What recipes can we give a computer that are reasonably 
efficient and still are guaranteed to work? After semantics and formal 
proof procedures, this constitutes the third major topic of the book. 

We discuss automation for tableaux and for resolution. For tableau sys
tems we give usable implementations in Prolog and we prove, of these 
implementations, that they do the job. Similar implementations of reso
lution are set up as exercises and projects. We have chosen Prolog as our 
implementation language because it allows us to get to the heart of the 
matter almost immediately, and results in code that is rather easy to fol
low. If you do not already know Prolog, here is a good opportunity; the 
understanding of Prolog that is necessary is fairly basic. We use few pro
gramming tricks. Indeed, if one understands the Prolog code given here, 
implementing comparable theorem provers in other languages should be 
straightforward. We do not claim that our theorem provers are particu
larly efficient, though. We tried to commit our quota of sins on the side 
of clarity, instead of efficiency. First understand, then speed it up if you 
can. 

Automated theorem proving has two goals: (1) to prove theorems and 
(2) to do it automatically. Over the years experience has shown these 
goals are incompatible. Fully automated theorem provers for first-order 
logic have been developed, starting in the 1960s, but as theorems get 
more complicated, the time that theorem provers spend tends to grow 
exponentially. As a result, no really interesting theorems of mathematics 
can be proved this way-the human lifespan is not long enough. 

The problem is to prove interesting theorems; the solution is to give 
theorem provers heuristics--roughly, rules of thumb for knowledge and 
wisdom. Some heuristics are fairly general; for example, in a proof that 
is about to break into several cases, do as much as possible that will be 
of broad applicability before the division into cases occurs. But many 
heuristics are area-specific; for instance, heuristics appropriate for plane 
geometry will probably not be appropriate for group theory. The devel-
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opment of good heuristics is a major area of research and requires much 
experience and insight. 

But still, heuristics must be imposed on some basic, underlying proof 
mechanism. And it is here that fully automated theorem provers play 
their role. Generally, heuristics are implemented as restrictions or mod
ifications to such systems. So, as a basis for more sophisticated work, 
for general understanding, and for historical reasons as well, fully au
tomated theorem provers are the place to start, and they are what we 
will be concerned with here. We will develop the foundations for further 
reading and research, but we will not go beyond that. 

Almost all fundamental work on automated theorem proving has been 
based on Resolution, a method that is due to J. A. Robinson [42] in 
the 1960s and that descends from techniques developed by Herbrand 
[25] in the 1930s. But there is another method, Semantic Tableaux, also 
developed in the 1960s, by R. M Smullyan [48], which descends from 
work of Gentzen [22] in the 1930s and Beth [5] in the 1950s. (Tableaux 
actually first appeared in [30], though this paper was largely unknown 
until recently.) Gentzen's and Herbrand's work are closely related, but 
still resolution and semantic tableaux have different flavors to them. 
Tableau-based theorem provers have been comparatively rare in the field. 
Both methods are, we think, of basic importance. A few books have 
treated both [2, 21] and are recommended for additional reading. 

So, a brief outline of the book is this. We begin with propositional logic, 
move on to first-order logic, then finish up with first-order logic with 
equality. For each of these we present both resolution and semantic tab
leau systems as primary. Implementations of semantic tableaux in Pro
log are given, and similar implementations of resolution are outlined as 
projects. We also present natural deduction, Gentzen sequent calculi, 
and axiomatic systems, because these require little additional work and 
are common in the literature, though they are generally less appropriate 
for automated theorem proving. Also, for each level of logic that we con
sider, we discuss necessary semantical background: Boolean valuations in 
the propositional case; models in the first-order case; and normal models 
in the first-order case with equality. Soundness and completeness of our 
theorem provers is established. Details of syntax, as well as semantics are 
presented, including normal form theorems. In general we use the device 
of uniform notation that is due to R. M. Smullyan, which allows us to 
have many connectives and quantifiers present in our language without 
the need for elaborate theorem provers with many special cases. We hope 
to keep it clean and elegant. 
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This edition differs from the previous one in three ways. First, it contains 
much new material. Second, revisions of the original material have been 
made throughout. Third, it contains this preface. 

Chapter 8 is almost entirely new (a few sections were moved to it from 
elsewhere). The new material consists of the following: 

1. A discussion of the AE calculus. This is a decidable part of first
order logic that is natural from the tableau perspective, powerful, 
easy to implement, and of historical significance. 

2. Herbrand's theorem. This is presented twice: non-constructively 
and constructively. The non-constructive version is based on the 
model existence theorem; the constructive one, on the tableau for
mulation. 

3. Gentzen's theorem (Gentzen's Hauptsatz). The proof is essentially 
the constructive one of Gentzen, but following Smullyan, it is formu
lated explicitly for the tableau calculus. This reformulation tends 
to clear away some of the unnecessary detail. 

4. A proof that is due to Statman that cut elimination can make proofs 
blow up exponentially. 

5. Craig's interpolation theorem. A non-constructive proof, based on 
the model existence theorem, was in the first edition and is still 
present. But now a second, constructive, proof has been added. 
This proof extracts an interpolant from a tableau proof. 
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6. Lyndon's interpolation theorem. This refinement of Craig's theorem 
is obtained from the same proof, with no additional work. 

7. Lyndon's homomorphism theorem. This adds to Beth's theorem an 
additional application of interpolation results and is of considerable 
interest for its own sake. 

It was pointed out by Reiner Hiihnle and Peter Schmitt, and indepen
dently by Wilfried Sieg, that the so-called Free-Variable 8-Rule given 
in the first edition was unnecessarily inefficient. (This rule deals with 
occurrences of existential quantifiers in tableau or resolution proofs.) 
Following their suggestions, a new version of the rule has replaced the 
old one. This required some changes in soundness proofs, but primar
ily it also forced the rewriting of much of the Prolog implementation 
of the first-order tableau theorem prover (and the version incorporating 
equality). 

At the suggestion of Krzysztof Apt, the original treatment of Multiple 
Unification in Chapter 7 has been modified. In the original version it 
used the proof of the Unification Theorem, now it uses the Theorem 
itself. 

A number of exercises were added. In addition, those exercises that are 
essentially programming projects have been clearly marked (with P as 
a superscript). There are almost 30 such exercises-they range from 
relatively easy modifying of programs in the text to substantial pieces 
of new work. 

Since the first edition of this work appeared, numerous papers and books 
on automated theorem-proving have been published, most of which are 
beyond our scope. There are, however, two items that are most pertinent, 
both handbooks. The first is the Handbook of Logic in Artificial Intel
ligence and Logic Programming [20]. This is an extensive multi-volume 
work; fortunately most volumes have already appeared. It includes cov
erage of topics like unification, and resolution and tableau theorem
proving. The other item is the Handbook of Tableau Methods [13], which 
should appear shortly. As its name implies, it contains thorough presen
tations of tableau techniques, applied to both classical and non-classical 
logics. 

Finally, lengthy sections of Prolog code are included in the text. These 
can be obtained in the following ways: First, by anonymous ftp, at the 
address ftp.springer-ny.com, in the directory /pub/supplements/mfitting 
(log on as anonymous, and use your e-mail address as password); second, 
at web site http://www.springer-ny.com/supplements/mfitting.html. 
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