
GRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

M elvi n Fitti ng

FIRST-ORDER LOGIC
AND AUTOMATED

THEOREM PROVING

Second Ed ition

Springer

Melvin Fitting
Department of Mathematics and Computer Science
Lehman College, The City of New York University
Bronx, NY 10468-1589 USA

Series Editors

David Gries
Fred B. Schneider

Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501 USA

With 15 line illustrations.

Library of Congress Cataloging-in-Publication Data
Fitting, Melvin. 1942-

First-order logic and automated theorem proving I Melvin Fitting.
- 2nd ed.

p. cm. - (Graduate texts in computer science)
Includes bibliographical references and index.
ISBN-13:978-14612-7515-2 e-ISBN-13:978-14612-2360-3
DOI:1 0.1 007/978-14612-2360-3

1. Automatic theorem proving. 2. Logic. Symbolic and
mathematical. I. Title. II. Series III. Series: Graduate texts
in computer science (Springer-Verlag New York Inc.)
QA76.9.A96F68 1996
511.3-<lc20 95-45225

Printed on acid-free paper.

© 1996, 1990 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 2nd edition 1996
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially
identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act,
may accordingly be used freely by anyone.

Production managed by Robert Wexler; manufacturing supervised by Jacqui Ashri.
Photocomposed copy prepared from the author's le-TE?< files using Springer's svwidecm style file.

987654321

To Raymond Smullyan
who brought me up
into the trees.

Preface

There are many kinds of books on formal logic. Some have philosophers
as their intended audience, some mathematicians, some computer scien
tists. Although there is a common core to all such books, they will be
very different in emphasis, methods, and even appearance. This book
is intended for computer scientists. But even this is not precise. Within
computer science formal logic turns up in a number of areas, from pro
gram verification to logic programming to artificial intelligence. This
book is intended for computer scientists interested in automated theo
rem proving in classical logic. To be more precise yet, it is essentially
a theoretical treatment, not a how-to book, although how-to issues are
not neglected. This does not mean, of course, that the book will be of no
interest to philosophers or mathematicians. It does contain a thorough
presentation of formal logic and many proof techniques, and as such it
contains all the material one would expect to find in a course in formal
logic covering completeness but, not incompleteness issues.

The first item to be addressed is, What are we talking about and why
are we interested in it? We are primarily talking about truth as used
in mathematical discourse, and our interest in it is, or should be, self
evident. Truth is a semantic concept, so we begin with models and their
properties. These are used to define our subject.

The second issue is how we, as limited human beings, can know what is
true. For this we have a device called a proof Many formal proof pro
cedures have been developed over the years: axiom systems, natural de
duction, tableaux, resolution. We present several of these and show how
they are used. Of course, the connections between these proof procedures
and truth must be established. We need what are called soundness and

viii Preface

completeness results. Ours are demonstrated in a uniform way for all
the systems we consider. Thus, we are able to discuss many formal proof
procedures without doing much more work than if we had only discussed
one.

Finally, how can we get a machine--a computer-to use one of our
proof procedures? When we human beings prove things, we bring all
our insight and experience to bear, not to mention the wisdom of the
past stored up in books. We are still learning how to give machines such
knowledge. Generally, we must be satisfied if we can give a computer
a simple-minded recipe by which it can find proofs, even though the
proofs may not be very clever. So, which of the formal proof procedures
that humans have developed will allow themselves to be applied blindly,
mechanically? What recipes can we give a computer that are reasonably
efficient and still are guaranteed to work? After semantics and formal
proof procedures, this constitutes the third major topic of the book.

We discuss automation for tableaux and for resolution. For tableau sys
tems we give usable implementations in Prolog and we prove, of these
implementations, that they do the job. Similar implementations of reso
lution are set up as exercises and projects. We have chosen Prolog as our
implementation language because it allows us to get to the heart of the
matter almost immediately, and results in code that is rather easy to fol
low. If you do not already know Prolog, here is a good opportunity; the
understanding of Prolog that is necessary is fairly basic. We use few pro
gramming tricks. Indeed, if one understands the Prolog code given here,
implementing comparable theorem provers in other languages should be
straightforward. We do not claim that our theorem provers are particu
larly efficient, though. We tried to commit our quota of sins on the side
of clarity, instead of efficiency. First understand, then speed it up if you
can.

Automated theorem proving has two goals: (1) to prove theorems and
(2) to do it automatically. Over the years experience has shown these
goals are incompatible. Fully automated theorem provers for first-order
logic have been developed, starting in the 1960s, but as theorems get
more complicated, the time that theorem provers spend tends to grow
exponentially. As a result, no really interesting theorems of mathematics
can be proved this way-the human lifespan is not long enough.

The problem is to prove interesting theorems; the solution is to give
theorem provers heuristics--roughly, rules of thumb for knowledge and
wisdom. Some heuristics are fairly general; for example, in a proof that
is about to break into several cases, do as much as possible that will be
of broad applicability before the division into cases occurs. But many
heuristics are area-specific; for instance, heuristics appropriate for plane
geometry will probably not be appropriate for group theory. The devel-

Preface ix

opment of good heuristics is a major area of research and requires much
experience and insight.

But still, heuristics must be imposed on some basic, underlying proof
mechanism. And it is here that fully automated theorem provers play
their role. Generally, heuristics are implemented as restrictions or mod
ifications to such systems. So, as a basis for more sophisticated work,
for general understanding, and for historical reasons as well, fully au
tomated theorem provers are the place to start, and they are what we
will be concerned with here. We will develop the foundations for further
reading and research, but we will not go beyond that.

Almost all fundamental work on automated theorem proving has been
based on Resolution, a method that is due to J. A. Robinson [42] in
the 1960s and that descends from techniques developed by Herbrand
[25] in the 1930s. But there is another method, Semantic Tableaux, also
developed in the 1960s, by R. M Smullyan [48], which descends from
work of Gentzen [22] in the 1930s and Beth [5] in the 1950s. (Tableaux
actually first appeared in [30], though this paper was largely unknown
until recently.) Gentzen's and Herbrand's work are closely related, but
still resolution and semantic tableaux have different flavors to them.
Tableau-based theorem provers have been comparatively rare in the field.
Both methods are, we think, of basic importance. A few books have
treated both [2, 21] and are recommended for additional reading.

So, a brief outline of the book is this. We begin with propositional logic,
move on to first-order logic, then finish up with first-order logic with
equality. For each of these we present both resolution and semantic tab
leau systems as primary. Implementations of semantic tableaux in Pro
log are given, and similar implementations of resolution are outlined as
projects. We also present natural deduction, Gentzen sequent calculi,
and axiomatic systems, because these require little additional work and
are common in the literature, though they are generally less appropriate
for automated theorem proving. Also, for each level of logic that we con
sider, we discuss necessary semantical background: Boolean valuations in
the propositional case; models in the first-order case; and normal models
in the first-order case with equality. Soundness and completeness of our
theorem provers is established. Details of syntax, as well as semantics are
presented, including normal form theorems. In general we use the device
of uniform notation that is due to R. M. Smullyan, which allows us to
have many connectives and quantifiers present in our language without
the need for elaborate theorem provers with many special cases. We hope
to keep it clean and elegant.

Preface to the Second Edition

This edition differs from the previous one in three ways. First, it contains
much new material. Second, revisions of the original material have been
made throughout. Third, it contains this preface.

Chapter 8 is almost entirely new (a few sections were moved to it from
elsewhere). The new material consists of the following:

1. A discussion of the AE calculus. This is a decidable part of first
order logic that is natural from the tableau perspective, powerful,
easy to implement, and of historical significance.

2. Herbrand's theorem. This is presented twice: non-constructively
and constructively. The non-constructive version is based on the
model existence theorem; the constructive one, on the tableau for
mulation.

3. Gentzen's theorem (Gentzen's Hauptsatz). The proof is essentially
the constructive one of Gentzen, but following Smullyan, it is formu
lated explicitly for the tableau calculus. This reformulation tends
to clear away some of the unnecessary detail.

4. A proof that is due to Statman that cut elimination can make proofs
blow up exponentially.

5. Craig's interpolation theorem. A non-constructive proof, based on
the model existence theorem, was in the first edition and is still
present. But now a second, constructive, proof has been added.
This proof extracts an interpolant from a tableau proof.

xii Preface to the Second Edition

6. Lyndon's interpolation theorem. This refinement of Craig's theorem
is obtained from the same proof, with no additional work.

7. Lyndon's homomorphism theorem. This adds to Beth's theorem an
additional application of interpolation results and is of considerable
interest for its own sake.

It was pointed out by Reiner Hiihnle and Peter Schmitt, and indepen
dently by Wilfried Sieg, that the so-called Free-Variable 8-Rule given
in the first edition was unnecessarily inefficient. (This rule deals with
occurrences of existential quantifiers in tableau or resolution proofs.)
Following their suggestions, a new version of the rule has replaced the
old one. This required some changes in soundness proofs, but primar
ily it also forced the rewriting of much of the Prolog implementation
of the first-order tableau theorem prover (and the version incorporating
equality).

At the suggestion of Krzysztof Apt, the original treatment of Multiple
Unification in Chapter 7 has been modified. In the original version it
used the proof of the Unification Theorem, now it uses the Theorem
itself.

A number of exercises were added. In addition, those exercises that are
essentially programming projects have been clearly marked (with P as
a superscript). There are almost 30 such exercises-they range from
relatively easy modifying of programs in the text to substantial pieces
of new work.

Since the first edition of this work appeared, numerous papers and books
on automated theorem-proving have been published, most of which are
beyond our scope. There are, however, two items that are most pertinent,
both handbooks. The first is the Handbook of Logic in Artificial Intel
ligence and Logic Programming [20]. This is an extensive multi-volume
work; fortunately most volumes have already appeared. It includes cov
erage of topics like unification, and resolution and tableau theorem
proving. The other item is the Handbook of Tableau Methods [13], which
should appear shortly. As its name implies, it contains thorough presen
tations of tableau techniques, applied to both classical and non-classical
logics.

Finally, lengthy sections of Prolog code are included in the text. These
can be obtained in the following ways: First, by anonymous ftp, at the
address ftp.springer-ny.com, in the directory /pub/supplements/mfitting
(log on as anonymous, and use your e-mail address as password); second,
at web site http://www.springer-ny.com/supplements/mfitting.html.

Contents

Preface vii

Preface to the Second Edition xi

1 Background 1

2 Propositional Logic 9

2.1 Introduction 9

2.2 Propositional Logic-Syntax 10

2.3 Propositional Logic-Semantics 14

2.4 Boolean Valuations 16

2.5 The Replacement Theorem 20

2.6 Uniform Notation 23

2.7 Konig's Lemma 26

2.8 Normal Forms 27

2.9 Normal Form Implementations 35

xiv Contents

3 Semantic Tableaux and Resolution 41

3.1 Propositional Semantic Tableaux . 41

3.2 Propositional Tableaux Implementations 47

3.3 Propositional Resolution 51

3.4 Soundness 55

3.5 Hintikka's Lemma 58

3.6 The Model Existence Theorem 59

3.7 Tableau and Resolution Completeness 64

3.8 Completeness With Restrictions 69

3.9 Propositional Consequence ... 74

4 Other Propositional Proof Procedures 77

4.1 Hilbert Systems 77

4.2 Natural Deduction 86

4.3 The Sequent Calculus 92

4.4 The Davis-Putnam Procedure 98

4.5 Computational Complexity 104

5 First-Order Logic 109

5.1 First-Order Logic-Syntax 109

5.2 Substitutions 113

5.3 First-Order Semantics 117

5.4 Herbrand Models ... 123

5.5 First-Order Uniform Notation 124

5.6 Hintikka's Lemma 127

5.7 Parameters 128

5.8 The Model Existence Theorem 129

5.9 Applications 132

5.10 Logical Consequence . 135

Contents xv

6 First-Order Proof Procedures 137

6.1 First-Order Semantic Tableaux . 137

6.2 First-Order Resolution 141

6.3 Soundness 142

6.4 Completeness . 143

6.5 Hilbert Systems 146

6.6 Natural Deduction and Gentzen Sequents 149

7 Implementing Tableaux and Resolution 151

7.1 What Next 151

7.2 Unification 152

7.3 Unification Implemented 161

7.4 Free-Variable Semantic Tableaux . 166

7.5 A Tableau Implementation 169

7.6 Free-Variable Resolution 184

7.7 Soundness 188

7.8 Free-Variable Tableau Completeness 191

7.9 Free-Variable Resolution Completeness 196

8 Further First-Order Features 203

8.1 Introduction 203

8.2 The Replacement Theorem 203

8.3 Skolemization 206

8.4 Prenex Form . 209

8.5 The AE-Calculus 212

8.6 Herbrand's Theorem. 215

8.7 Herbrand's Theorem, Constructively. 221

8.8 Gentzen's Theorem 225

8.9 Cut Elimination .. 228

8.10 Do Cuts Shorten Proofs? 243

8.11 Craig's Interpolation Theorem 254

8.12 Craig's Interpolation Theorem-Constructively . 257

8.13 Beth's Definability Theorem 263

8.14 Lyndon'S Homomorphism Theorem 266

XVI Contents

9 Equality 271

9.1 Introduction 271

9.2 Syntax and Semantics 273

9.3 The Equality Axioms 276

9.4 Hintikka's Lemma .. 279

9.5 The Model Existence Theorem 284

9.6 Consequences. 285

9.7 Tableau and Resolution Systems 288

9.8 Alternate Tableau and Resolution Systems 294

9.9 A Free-Variable Tableau System With Equality. 298

9.10 A Tableau Implementation With Equality. 305

9.11 Paramodulation 312

References 315

Index 319

List of Tables

2.1 Primary and Secondary Connectives

2.2 00- and ,B-Formulas and Components

2.3 Clause Set Reduction Rules

2.4 Dual Clause Set Reduction Rules.

3.1 Tableau Expansion Rules ..

3.2 Resolution Expansion Rules.

5.1 "(- and b-Formulas and Instances

6.1 First-Order Tableau Expansion Rules

6.2 First-Order Resolution Expansion Rules .

7.1 Free-Variable Tableau Expansion Rules .

7.2 Free-Variable Resolution Expansion Rules.

15

23

30

33

42

51

124

138

141

167

184

