Skip to main content

Frequency Assignment Problems

  • Chapter
Handbook of Combinatorial Optimization

Abstract

The term frequency assignment has been used to describe many types of problems which, quite often, have different modeling needs and objectives. These problems include:

  1. 1.

    Planning models for permanent spectrum allocation, licensing, and regulation which maximize utilization of all radio spectra [94].

  2. 2.

    Planning models for network design within a given allocation to include; aeronautical mobile, land mobile, maritime mobile, broadcast, land fixed (point-to-point) and satellite.

  3. 3.

    On-line algorithms for dynamically assigning frequencies to users within an established network. Of special interest here are land cellular mobile systems, where an enormous amount of research has been done. A paper by Katzela and Naghshineh [55] contains nearly 100 references to works just in cellular dynamic channel assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K.I. Aardal, A. Hipolito, C.P.M. Van Hoesel, B. Jansen, C. Roos and T. Terlaky, A branch-and-cut algorithm for the frequency assignment problem, EUCLID CALMA Project,Delft and Eindhoven Universities of Technology, The Netherlands, (1995)

    Google Scholar 

  2. E. Aarts and J. Korst, Simulated Annealing and Boltzman Machines: A Stochastic Approach To Combinatorial Optimization and Neural Computing, John Wiley and Sons (1989).

    Google Scholar 

  3. I. Baybars, Optimal assignment of broadcasting frequencies, European Journal of Operations Research, Vol. 9, (1982) pp. 257–263.

    Article  MATH  Google Scholar 

  4. E. A. Bender and H. S. Wilf, A theoretical analysis of backtracking in the graph coloring problem, Journal of Algorithms 6, (1985), pp. 275–282.

    Google Scholar 

  5. H.P. Benthem, GRAPH: Generating radio link frequency assignment problems heuristically, Master’s Thesis, Faculty of Technical Mathematics and Informatics, Delft University, Delft, The Netherlands, (1995).

    Google Scholar 

  6. H. van Benthem, A. Hipolito, B. Jansen, C. Roos, T. Terlaky and J. Warners, EUCLID CALMA technical report, GRAPH: a test case generator, generating radiolink frequency assignment problems heuristically, EUCLID CALMA Project, Delft and Eindhoven Universities of Technology, The Netherlands, (1995).

    Google Scholar 

  7. H. van Benthem, A. Hipolito, B. Jansen, C. Roos, T. Terlaky and J. Warners, GRAPH, a test problem generator for the radiolink frequency assignment problem, EUCLID CALMA Project Supplemental Report 2.3.2a:, Delft and Eindhoven Universities of Technology, The Netherlands, (1995).

    Google Scholar 

  8. L.A. Berry and D. H. Cronin, The spectrum cost of frequency distance rules, IEEE International Symposium on Electromagnetic Compatibility, (1983) pp. 75–78.

    Google Scholar 

  9. D.P. Bertsekas and R. G. Gallager, Data Networks, 2nd ed, (Prentice-Hall, 1992 ).

    Google Scholar 

  10. B. Bollobâs and A. J. Harris, List colorings of graphs, Graphs and Combinatoricsl, (1985) pp. 115–187

    Google Scholar 

  11. I. Bonias, T-colorings of complete graphs, Ph.D. Thesis, Department of Mathematics, Northeastern University, Boston, MA (1991).

    Google Scholar 

  12. A. Bouju, J.F. Boyce, C.H.D. Dimitropoulis, G. vom Scheidt, and J.G. Taylor, Tabu search for the radio link frequency assignment problem, Applied Decision Technologies, London [ADT951, UNICOM Conference, (1995).

    Google Scholar 

  13. F. Box, A heuristic technique for assigning frequencies to mobile radio nets, IEEE Trans. Vehicular Technology, Vol. VT-27, (1978), pp. 57–74.

    Google Scholar 

  14. D. Brelaz, New methods to color the vertices of a graph, Communications ACM, Vol. 22, (1979) pp. 251–256.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.H. Cameron, The solution of the graph coloring problem as a set covering problem, IEEE Transactions on Electromagnetic Compatibility, Vol EMC-19, (1973) pp. 320–322.

    Google Scholar 

  16. F. Carmassi and L. Tornati, A theory of frequency assignment in broadcasting network planning, European Broadcast Union Technical Review, No. 198, (Apr. 1983) pp. 72–81.

    Google Scholar 

  17. D.J. Castelino, S. Hurley and N.M. Stephens, A Tabu search algorithm for frequency assignment, Annals of Operations Research, Vol 41, (1993), pp. 343–358.

    Article  Google Scholar 

  18. D. Castelino and N. Stephens, Tabu thresholding for the frequency assignment problem, Meta-Heuristics: Theory and Applications (Edited by I.H. Osman and J.P. Kelly ), Kluwer Academic Publishers 1996.

    Google Scholar 

  19. V. Chvâtal, Perfectly ordered graphs, Annals of Discrete Mathematics, 21, (1984) pp. 63–65.

    Google Scholar 

  20. L.W. Couch, Modern Communications Systems: Principles and Practices, Prentice-Hall, Inc., (1995).

    Google Scholar 

  21. M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congressus Numerantium,Vol 35 (1982), pp. 191208.

    Google Scholar 

  22. M.B. Cozzens and F.S. Roberts, Double semiorders and double indifference graphs, SIAM Journal Algebraic Discrete Methods 3 (1982) pp. 566–583.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.B. Cozzens and F.S. Roberts, Greedy algorithms for T-colorings of complete graphs and the meaningfulness of conclusions about them, Journal of Combinatorics, Information and System Sciences, Vol 16 No. 4, (1991), pp. 286–299.

    MathSciNet  MATH  Google Scholar 

  24. M.B. Cozzens and D.I. Wang, The general channel assignment problem, Congressus Numerantium, Vol 41 (1984), pp. 115–129.

    MathSciNet  Google Scholar 

  25. W. Crompton, S. Hurley and N.M. Stephens, Frequency assignment using a parallel genetic algorithm, Proceedings of Natural Algorithms in Signal Processing, (1993).

    Google Scholar 

  26. C.E. Dadson, J. Durkin and R.E. Martin, Computer prediction of field strength in the planning of radio systems, IEEE Trans. Vehicular Technology, Vol. VT-24, (1975), pp. 1–8.

    Google Scholar 

  27. D. de Werra and Y. Gay, Chromatic scheduling and frequency assignment, Discrete Applied Mathematics 49, (1994) pp. 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. P. Doignon, Threshold representations of multiple semiorders, SIAM Journal Algebraic Discrete Methods 8 (1987) pp. 77–84.

    Article  MathSciNet  MATH  Google Scholar 

  29. R.B. Eggleton, P. Erdös and D.K. Skilton, Coloring the real line, Journal of Combinatorial Theory, Series B, 39, (1985), 86–100.

    Article  MathSciNet  MATH  Google Scholar 

  30. Eindhoven RLFAP Group, Radio link frequency assignment project, EUCLID CALMA Project Report 2.3.3 Local Search:, Eindhoven University of Technology, The Netherlands, (1995).

    Google Scholar 

  31. A. Eisenblätter, A frequency assignment problem in cellular phone networks (extended abstract), Network Design, Connectivity and Facility Location, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35, American Mathematical Society (1997).

    Google Scholar 

  32. P. Erdös, A. L. Rubin and H. Taylor, Choosability in graphs, Congres-sus Numerantium 26, (1979), pp. 125–157.

    Google Scholar 

  33. L.R. Foulds, Graph Theory Application, Springer-Verlag New York Inc., (1992).

    Google Scholar 

  34. R.A. Frazier, Compatibility and the frequency selection problem, IEEE Trans. Electromagnetic Compatibility,Vol. EMC-17, (1975), pp. 248275.

    Google Scholar 

  35. D. R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific Journal of Math 15, (1965) pp. 835–855.

    Article  MathSciNet  MATH  Google Scholar 

  36. Z. Füredi, J. R. Griggs and D.J. Kleitinan, Pair labellings with given distance, SIAM Journal of Discrete Mathematics 2, (1989) pp. 491–499.

    Article  MATH  Google Scholar 

  37. A. Gamst, Some lower bounds for a class of frequency assignment problems, IEEE transactions on vehicular technology, Vol. VT-35, No. 1 (Feb. 1986), pp. 8–14.

    Article  Google Scholar 

  38. A. Gamst and K. Ralf, Computational complexity of some interference graphs, IEEE Transactions on Vehicular Technology, Vol 39 No. 2, (1990) pp. 140–149.

    Google Scholar 

  39. A. Gamst and W. Rave, On frequency assignment in mobile automatic telephone systems, GLOBCOM 82, IEEE Global Telecommunications Conference, Vol 1, (1982) pp. 309–315.

    Google Scholar 

  40. M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide To The Theory of NP-Completeness, W.H. Freeman and Company, New York, NY (1979).

    Google Scholar 

  41. F. Glover, Tabu search - Part I. ORSA Journal on Computing 1: 190206, 1989.

    Google Scholar 

  42. F. Glover, Tabu search–Part II. ORSA Journal on Computing 2: 4–32, 1990.

    Article  MATH  Google Scholar 

  43. F. Glover, Tabu Thresholding: Improved search strategies by non-monotonic search trajectories, ORSA Journal on Computing to appear.

    Google Scholar 

  44. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading MA (1989).

    Google Scholar 

  45. M. Grötschel, L. Lovâsz, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, (1981) 169–197.

    Article  MathSciNet  MATH  Google Scholar 

  46. W.K. Hale, Frequency assignment: theory and applications, Proc. of The IEEE Vol 68, No. 12, (1980) pp. 1497–1514.

    Article  Google Scholar 

  47. W.K. Hale, New spectrum management tools, IEEE International Symposium on Electromagnetic Compatibility, Boulder, CO (1981) pp. 4753.

    Google Scholar 

  48. F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, MA (1969).

    Google Scholar 

  49. A. Hertz, COSINE: a new graph coloring algorithm, Operations Research Letters 10, (1991) pp. 411–415.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI (1975).

    Google Scholar 

  51. S. Hurley and D. H. Smith, Fixed spectrum frequency assignment using natural algorithms, Genetic Algorithms in Engineering Systems: Innovations and Applications, IEE Conference Publication No. 414, (1995).

    Google Scholar 

  52. T.R. Jensen and B. Toft, Graph Coloring Problems, John Wiley and Sons, New York, (1995).

    MATH  Google Scholar 

  53. P.K. Johri, An insight into dynamic channel assignment in cellular mobile communications systems, European Journal of Operations Research, 74, (1994) pp. 70–77.

    Article  MATH  Google Scholar 

  54. N. Karmarkar, An interior point approach to NP-Complete problems - part 1, Contemporary Mathematics, Vol 114, (1990) pp. 297–308.

    Google Scholar 

  55. I. Katzela and M. Naghshineh, Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey, IEEE Personal Communications (June 1996), pp. 10–31.

    Google Scholar 

  56. D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite programming, INCOMPLETE

    Google Scholar 

  57. S. Kirkpatrick, C.D, Gelatt, Jr., and M.P. Vecchi, Optimization by simulated annealing, Science, Vol 220, (1983) pp. 671–680.

    Google Scholar 

  58. Y. Kishi, T. Mizuike and F. Watanabe, A unified approach for frequency assignment of cellular mobile networks, Third Annual International Conference on Universal Personal Communications, San Diego, CA, (1994) pp. 563–567.

    Google Scholar 

  59. T. Kurokawa and S. Kozuka, Use of neural networks for the optimum frequency assignment problem, Electronics and Communications in Japan, Part 1, Vol, 77, No, 11, (1994).

    Google Scholar 

  60. T.A. Lanfear, Graph Theory and Radio Frequency Assignment, Technical Report, Allied Radio Frequency Agency NATO Headquarters, B1110, Brussels, Belgium, (1989).

    Google Scholar 

  61. D.S.P. Leung, Application of the partial backtracking technique to the frequency assignment problem, IEEE International Symposium on Electromagnetic Compatibility, Boulder, CO (1981) pp. 70–74.

    Google Scholar 

  62. D. D. Liu, Graph homomorphisms and the channel assignment problem, Ph.D. Thesis, Department of Mathematics, University of South Carolina, Colombia, SC (1991).

    Google Scholar 

  63. D.W. Matula and L.L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, Journal of The ACM, Vol. 30, (1983) pp. 417–427.

    Article  MathSciNet  MATH  Google Scholar 

  64. B.H. Metzger, Spectrum management technique, paper presented at the 38th National ORSA Meeting, Detroit, MI, (1970).

    Google Scholar 

  65. L.C. Middlecamp, UHF taboos–history and development, IEEE Transactions on Consumer Electronics, Vol CE24, (1978) pp. 514–519.

    Google Scholar 

  66. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, Inc., (1988).

    MATH  Google Scholar 

  67. R.J. Opsut and F.S. Roberts, I-colorings, I-phasings, and I-intersection assignments for graphs, and their applications, Networks, Vol. 13 (1983) pp. 327–345.

    Article  MathSciNet  MATH  Google Scholar 

  68. P.M. Pardalos, F. Rendl and H. Wolkowicz, The Quadratic Assignment Problem: A Survey and Recent Developments, Quadratic Assignment and Related Problems, Panos M. Pardalos and Henry Wolkowicz (eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science,16 American Mathematical Society, (1994) pp. 317–342.

    Google Scholar 

  69. J. Peemöller, A correction to Brelaz’s modification of Brown’s coloring algorithm, Communications of the ACM, Vol. 26, No. 8, (1983) pp. 595–597.

    Google Scholar 

  70. A. Quellmalz, A. Knälmann and B. Müller, Efficient frequency assignment with simulated annealing, IEE Ninth International Conference on Antennas and Propagation, Eindhoven, The Netherlands, Vol. 2, (1995).

    Google Scholar 

  71. A. Raychaudhuri, Intersection assignments, T-coloring, and powers of graphs, Ph.D. Thesis, Department of Mathematics, Rutgers University, New Brunswick, NJ, (1985).

    Google Scholar 

  72. A. Raychaudhuri, Further results on T-coloring and frequency assignment problems, SIAM Journal on Discrete Mathematics,Vol. 7 (1994), pp. 605–613.

    Google Scholar 

  73. F.S. Roberts, On the Compatibility between a graph and a simple order, Journal Combinatorial Theory, 11 (1971), pp 28–38.

    Article  MATH  Google Scholar 

  74. F.S. Roberts, On the mobile radio frequency assignment problem and the traffic light phasing problem, Annals of New York Academy of Sciences Vol. 319 (1979) pp 466–483.

    Article  Google Scholar 

  75. F.S. Roberts, From garbage to rainbows: generalizations of graph coloring and their applications, in Y. Alavi, G. Chartrand, O.R. Oellerman and A.J. Schwenk (eds.) Graph Theory, Combinatorics, and Applications, Vol. 2 ( Wiley, New York, 1991 ), pp. 1031–1052.

    Google Scholar 

  76. F.S. Roberts, T-colorings of graphs: recent results and open problems, Discrete Math. 93, (1991) pp. 229–245.

    Article  MathSciNet  MATH  Google Scholar 

  77. F.S. Roberts, No-hole 2-distant colorings, Mathl. Comput. Modelling Vol. 17, No. 11 (1993) pp. 139–144.

    Article  MATH  Google Scholar 

  78. D. Sakai, Generalized graph colorings and unit interval graphs, Ph.D. Thesis, RUTCOR, Rutgers University, New Brunswick University, NJ (1992).

    Google Scholar 

  79. D. Sakai and C. Wang, No-hole (r+1)-distant colorings, Discrete Math. 119, (1993), pp. 175–189.

    Article  MathSciNet  MATH  Google Scholar 

  80. S. S. Skiena, The Algorithm Design Manual, TELOS, Springer-Verlag New York Inc., (1998).

    Google Scholar 

  81. D.H. Smith, Graph coloring and frequency assignment, ARS Combinatorica, Vol. 25C, (1988) pp. 205–212.

    Google Scholar 

  82. G.D. Smith, A. Kapsalis, V.J. Rayward-Smith, Radio link frequency assignment project, EUCLID CALMA Project Report 2.1 Genetic Algorithm Approaches to Solving the Radio Link Frequency Assignment Problem:, University of East Anglia, UK (1995).

    Google Scholar 

  83. S. Stahl, n-tuple colorings and associated graphs, J. Combinatorial Theory 20 (1976) pp. 185–203.

    Google Scholar 

  84. B.A. Tesman, T-colorings, list T-colorings, and set T-colorings of graphs, Ph.D. Thesis, Department of Mathematics, Rutgers University, New Brunswick, NJ, (1989).

    Google Scholar 

  85. B.A. Tesman, Applications of forbidden difference graphs to T-colorings, Congrussus Numerantium 74 (1990) pp. 15–24.

    MathSciNet  Google Scholar 

  86. B. A. Tesman, Set T-colorings, Congrussus Numerantium 77 (1990) pp. 229–242.

    MathSciNet  MATH  Google Scholar 

  87. S. Tiourine, C. Hurkins and J. K. Lenstra, An overview of algorithmic approaches to frequency assignment problems, EUCLID CALMA Project Overview Report, Delft University of Technology, The Netherlands, (1995).

    Google Scholar 

  88. D. Sakai Troxell, No-hole k-tuple (r+1)-distant colorings, Discrete Applied Math. 64, (1996) pp. 67–85.

    Article  Google Scholar 

  89. D. -I. Wang, The channel assignment problem and closed neighborhood containment graphs, Ph.D. Thesis, Northeastern University, Boston, MA (1985).

    Google Scholar 

  90. J.P. Warners, T. Terlaky, C. Roos and B. Jansen, A Potential Reduction Approach to The Frequency Assignment Problem, Technical Report 9598, Faculty of Technical Mathematics and Informatics, Delft University, Delft, The Netherlands, (1995).

    Google Scholar 

  91. D. Werra, Y. Gay, Chromatic scheduling and frequency assignment, Discrete Applied Math. 49, (1994) pp. 165–174.

    Article  MATH  Google Scholar 

  92. H.S. Wilf, Backtrack: an 0(1) expected time algorithm for the graph coloring problem, Information Processing Letters 18 (1984) pp. 119121.

    Google Scholar 

  93. A. Wisse, Mathematical model for the radio link frequency assignment problem, EUCLID CALMA Project, Delft University of Technology, The Netherlands, (1994).

    Google Scholar 

  94. J.A. Zoellner, Frequency assignment games and strategies, IEEE Transactions on Electromagnetic Compatibility,Vol EMC-15, (1973) pp. 191196.

    Google Scholar 

  95. J.A. Zoellner and C.L. Beall, A breakthrough in spectrum conserving frequency assignment technology, IEEE Transactions on Electromagnetic Compatibility, Vol EMC-19, (1977) pp. 313–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murphey, R.A., Pardalos, P.M., Resende, M.G.C. (1999). Frequency Assignment Problems. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3023-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3023-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4813-7

  • Online ISBN: 978-1-4757-3023-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics