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Foreword

If one sets out to construct programming languages of resolutely high level,
while taking a deliberately relaxed view of the efficiency concerns that
dominate the design of traditionallower-Ievel programming languages such
as C, the key question to be faced is this: What objects and operations
best represent the most pervasive, "bread-and-butter" operations that the
language's intended users will most commonly face? Since programming
languages must deal with an endlessly expanding range of applications,
this question can never have any single or final answer. For example, the
coming of the desktop computer, with its display screen, has lent great in
terest to the design of objects (commonly called ''widgets'') and operations
for the mouse-driven interactive interface, and to the design of languages
focused on notions of "keyboardless programming." Also, niche sublan
guages, for example, the language of regular expressions for the important
area of string manipulation, will always remain important elements of the
general picture. Nevertheless, we can identify one area of preeminent com
monality that no general-purpose high-level language can afford to ignore:
the manipulation of ordered and unordered aggregates (sets and lists) and
of interelement associations (maps) . Recognizing this, most recent major
programming languages have incorporated such objects in one or another
form: the "container classes" of Java, "arrays" of Javascript, "hashes" of
Perl, and so forth. The older SETL language, emphasized in the preseht
work, takes a particularly direct and comprehensive approach to objects of
this dass by wholesale adoption of the common mathematical syntax and
semantics of hereditarily finite set theory.
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As examples given in the present work show, this works well for the
expression of many algorithms. If more justification is needed, we may
note that the set-theoretic formalisms developed in the nineteenth and
early twentieth centuries made it possible to reexpress the whole intuitive
content of geometry, arithmetic, and calculus ("analysis") in set-theoretic
terms. We may say in consequence of these developments that all the key
concepts of standard mathematics can be digested without forcing any
adjustment of the set-theoretic foundation constructed for arithmetic, anal
ysis, and geometry. In particular, this foundation also proves to support all
the more abstract mathematical constructions elaborated in such twentieth
century fields as topology, abstract algebra, and category theory. Indeed ,
these were expressed set-theoretically from their inception. So (if we ignore
a few ongoing explorations whose significance remains to be determined)
set theory currently stands as a comfortable and universal basis for the
whole of mathematics.

Mathematics, however, goes well beyond any mere scheme for com
putation, no matter how effective and general. Ambitious to deal with
universals, it must inevitably become a mechanism for sentence manipula
tion, which regards the formulas of any system with which it deals as objects
themselves subject to rules of manipulation and possessing (or failing to
possess) semantic properties like models and a range of validity, perhaps
universal. However, since it has been known since Gödel that these key
metamathematical properties of formulas can never be calculated algorith
mically for any sufficiently rich dass of formulas (certainly not for all the
formulas of set theory), this range of mathematical investigations must be
approached with a cautious respect for the bottomless pit of undecidability
that lies near . Nevertheless, determination to explore this challenging area
motivates the present book.

The requisite caution is expressed in the careful choice of formalisms for
investigation. Ideally, these should be (a) highly expressive, in regard to
some dass of formulas of clear interest; and (b) manageable, in that they
form either (b.i) a decidable dass of formulas, or at least (b.ii) a semidecid
able dass of formulas, or, if even this fails, (b.iii) a dass of formulas allowing
important and interesting manipulations. Work like that reported in the
present book is fundamentally shaped by the need to deal with trade-offs
between expressivity and manageability.

The present book selects a variety of such formalisms, some classical,
some less so, for close investigation. These include (i) the propositional
calculus, which is both decidable and basic to much else; (ii) various pred
icate systems, with quantifiers restricted to make them manageable; (iii) a
formal theory of lists; (iv) subformalisms of set theory, again restricted to
make them manageable; and (v) map calculi.

Concerning these last, which may stand for the whole class of "less stan
dard" logics (also including modal and temporal logics) that have been
developed and investigated in this century, we may remark that their spe-
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cial interest (relative to "vanilla" set theory) lies in their potential ability
to pinpoint areas possessing special semantic and formal advantage. These
should allow classes of statements, broad enough to satisfy the requirements
of some significant application domain, but constrained enough to be more
decidable, or at least more effectively manipulable, than the set-theoretic
translations that they are certain to possess. Map theory is a candidate of
the kind that the present work studies in some detail.

Finally, the present work reviews some of the basic techniques, including
formula normalization, resolution , unification, and the "tableau" technique
elaborated in studies by its authors, for decision, and in some cases efficient
decision, of the classes of logical formulas considered. The many issues
touched on make the book both an introduction to its subject area and
a monograph informing the reader of quite recent developments, some of
whose most interesting parts are the work of its authors.

New York University

February 2001

Jacob T . Schwartz



Preface

This introductory-Ievel text on computable set theory provides a thorough,
up-to-date, and comprehensive account of set-oriented symbolic manip
ulat ion methods suitable for automated reasoning. Its main objectives
are

• to provide a flexibleformalization for a variety of set languages, which
are too often tackled in unduly naive terms ; and

• to clarify the semantics of set constructs firmly established in modern
specification languagee and in the programming practice.

Set notions are, in fact, so common in computer science today (as they are in
mathematics) that virtually everybody in the field has a rather reliable intu
itive grasp of them. However, even with familiar notions, frequent recourse
to intuition may be tiresome; accordingly, the control imposed by system
atic techniques promises increased reliability. Moreover, we believe that a
formalized logical characterization is the safest guide for a computationally
oriented use of the structured datatypes one may need: a thread which can
help in both the conception and use of software tools-which, in the case
of sets, will have a broad spectrum of applications.

In response to diverse needs and applications, research in the field has
produced a wealth of approaches and semantics related to sets . The abil
ity of mastering today's variety of systems by means of crisp formal tools
is aprerequisite for a high and fine-tunable degree of control over sets
and aggregates in general, of the same kind one achieves over numbers
thanks to algebra. To enable us to do that, many manageable and wide-
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spanning algorithmic methods and deductive techniques are presented
in this book. Topics in the book include semantic unification, decision
algorithms, modal logics, declarative programming, tableau-based proof
techniques, and theory-based theorem proving.

Intended Readers

This book is particularly addressed to graduate and postgraduate stu
dents, scholars, and researchers in computer science, artificial intelligence,
logic, and computational mathematics who feel a need to complement
their intuitive understanding of set concepts with the ability to master
them by symbolic and logically based algorithmic methods and deductive
techniques.

Also, database and programming language designers and practitioners
who are interested in the uses of formal reasoning in computer science will
find in this book a clear view of the use of sets and aggregates in such
critical issues as the specification of problems, algorithms, and abstract
data-types, and algorithmic program verification.

The style of presentation, largely self-contained, is rigorous and accurate.
Some familiarity with symbolic logic is helpful but is not a requirement.

Salient Features and Computational Aspects

The presentation will be axiomatic and will survey several variants of the
Zermelo-Fraenkel (ZF) theory tailored to different application needs: for
instance, unlike ZF, one such variant will be meant to deal exclusively
with finite sets; some theories will place individuals at the bottom of the
construction of sets, whereas others will found the entire construction solely
on the null set ; also, some theories allow the membership relation to form
cycles, which some other theories forbid, etc .

Concrete, computable models will also be supplemented. These are mod
els whose sets can be algorithmically construed and manipulated. To allow
this, quite often the sets under study will be finite, or they will admit a
canonical term representation. On occasion, they will be Hat sets tractable
in purely Boolean terms, but, in general, a set can belong to other sets.

Several chapters ofthe book are devoted to decidability-related issues and
set unification. The axiomatic approach will make it possible to highlight
precisely the assumptions that ensure the decidability of some syntactically
delimited fragments of set theories. Some of the decision procedures will be
presented in the form of efficient saturation strategies for tableau systems.

We feel that this book will meet the needs of many researchers because
it is neither a text on axiomatic set theory nor a text on algorithmics,
but rather an attempt to bridge a gap between the two. We hope that it
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will convince some readers of the usefulness of sets in specifications that,
ideally, should be both executable and declarative. At any rate, we have
the strong expectation that formalized sets will prove crucial in raising the
standards of program-correctness technology.
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