Abstract
This chapter gives an introduction to music recommender systems research. We highlight the distinctive characteristics of music, as compared to other kinds of media. We then provide a literature survey of content-based music recommendation, contextual music recommendation, hybrid methods, and sequential music recommendation, followed by overview of evaluation strategies and commonly used data sets. We conclude by pointing to the most important challenges faced by music recommendation research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will not further detail collaborative filtering of music ratings in this chapter. To understand the principles of this technique, we refer the reader to Chap. 2
- 2.
To avoid confusion, we note that content has different connotations within the MIR and recommender systems communities. MIR makes an explicit distinction between (content-based) approaches that operate directly on audio signals and (metadata) approaches that derive item descriptors from external sources, e.g., web documents [70]. In recommender systems research, as in the remainder of this chapter, both types of approaches are described as “content-based”.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
http://zune.net; now Xbox Music.
- 18.
- 19.
In AotM-2011, this figure refers to the sum of the length of all playlists, where length is measured as the number of songs.
- 20.
For AotM-2011 this is partially the case, as not all playlist categories refer to contextual factors.
- 21.
- 22.
- 23.
- 24.
There exist many more music benchmarking activities which are oriented towards retrieval or annotation, e.g., MIREX (http://www.music-ir.org/mirex/wiki) or MusiClef (http://www.cp.jku.at/datasets/musiclef).
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
References
Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32, 67–80 (2011)
Aiolli, F.: A preliminary study on a recommender system for the million songs dataset challenge. Preference Learning: Problems and Applications in AI p. 1 (2012)
Aizenberg, N., Koren, Y., Somekh, O.: Build your own music recommender by modeling internet radio streams. In: Proceedings of the 21st International Conference on World Wide Web, pp. 1–10. ACM, New York, NY, USA (2012)
Alghoniemy, M., Tewfik, A.: Music Playlist Generation Based on Global and Transitional Constraints. In: IEEE Transactions on Multimedia (2003)
Ankolekar, A., Sandholm, T.: Foxtrot: a soundtrack for where you are. In: Proceedings of Interacting with Sound Workshop: Exploring Context-Aware, Local and Social Audio Applications, pp. 26–31 (2011)
Aucouturier, J.J.: Sounds like teen spirit: Computational insights into the grounding of everyday musical terms. In: J. Minett, W. Wang (eds.) Language, Evolution and the Brain, Frontiers in Linguistics, pp. 35–64. Taipei: Academia Sinica Press (2009)
Aucouturier, J.J., Pachet, F.: Scaling Up Music Playlist Generation. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2002), pp. 105–108. Lausanne, Switzerland (2002)
Aucouturier, J.J., Pachet, F., Sandler, M.: “The way it sounds”: timbre models for analysis and retrieval of music signals. IEEE Trans. on Multimedia 7(6), 1028–1035 (2005).
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A nucleus for a web of open data. In: ISWC’08, pp. 722–735 (2008)
Baccigalupo, C.G.: Poolcasting: an intelligent technique to customise musical programmes for their audience. Ph.D. thesis, Universitat Autònoma de Barcelona (2009)
Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Lüke, K.H., Schwaiger, R.: InCarMusic: Context-Aware Music Recommendations in a Car. In: International Conference on Electronic Commerce and Web Technologies (EC-Web). Toulouse, France (2011)
Barrington, L., Oda, R., Lanckriet, G.: Smarter than genius? Human evaluation of music recommender systems. In: Proceedings of the 10th International Conference on Music Information Retrieval (ISMIR’09), pp. 357–362 (2009)
Bertin-Mahieux, T., Eck, D., Maillet, F., Lamere, P.: Autotagger: A model for predicting social tags from acoustic features on large music databases. Journal of New Music Research 37(2), 115–135 (2008).
Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, pp. 591–596. Miami, USA (2011)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Machine Learning Research 3, 993–1022 (2003)
Bogdanov, D.: From music similarity to music recommendation: Computational approaches based in audio features and metadata. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, Spain (2013)
Bogdanov, D., Haro, M., Fuhrmann, F., Xambó, A., Gómez, E., Herrera, P.: Semantic audio content-based music recommendation and visualization based on user preference examples. Information Processing & Management 49(1), 13–33 (2013).
Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: Int. Society for Music Information Retrieval Conf. (ISMIR’11), pp. 97–102 (2011)
Bogdanov, D., Herrera, P.: Taking advantage of editorial metadata to recommend music. In: Int. Symp. on Computer Music Modeling and Retrieval (CMMR’12) (2012).
Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying Low-Level and High-Level Music Similarity Measures. IEEE Transactions on Multimedia 13(4), 687–701 (2011)
Boland, D., Murray-Smith, R.: Information-theoretic Measures of Music Listening Behaviour. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)
Bonnin, G., Jannach, D.: Evaluating the quality of playlists based on hand-crafted samples. In: 14th International Society for Music Information Retrieval Conference, ISMIR (2013)
Bosteels, K., Pampalk, E., Kerre, E.: Evaluating and analysing dynamic playlist generation heuristics using radio logs and fuzzy set theory. In: Proceedings of the 10th International Society for Music Information Retrieval Conference, ISMIR (2009)
Braunhofer, M., Kaminskas, M., Ricci, F.: Location-aware music recommendation. International Journal of Multimedia Information Retrieval 2(1), 31–44 (2013).
Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommendation by unified hypergraph: combining social media information and music content. In: ACM Int. Conf. on Multimedia (MM’10), pp. 391–400 (2010).
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)
Burke, R.: Hybrid web recommender systems. In: The adaptive web, pp. 377–408 (2007)
Cai, R., Zhang, C., Wang, C., Zhang, L., Ma, W.Y.: Musicsense: contextual music recommendation using emotional allocation modeling. In: MULTIMEDIA ‘07: Proceedings of the 15th international conference on Multimedia, pp. 553–556. ACM, New York, NY, USA (2007)
Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE 96(4), 668–696 (2008)
Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-Based Music Information Retrieval: Current Directions and Future Challenges. Proceedings of the IEEE 96, 668–696 (2008)
Celma, Ò.: Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Berlin, Germany (2010)
Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: ACM Conf. on Recommender Systems (RecSys’08), pp. 179–186 (2008)
Celma, O., Herrera, P., Serra, X.: Bridging the music semantic gap. In: ESWC 2006 Workshop on Mastering the Gap: From Information Extraction to Semantic Representation (2006). Available online: http://mtg.upf.edu/node/874
Celma, O., Lamere, P.: Music recommendation and discovery revisited. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011), pp. 7–8. ACM, New York, NY, USA (2011)
Celma, O., Ramírez, M., Herrera, P.: FOAFing the music: A music recommendation system based on RSS feeds and user preferences. In: Int. Conf. on Music Information Retrieval (ISMIR’05) (2005)
Cunningham, S., Caulder, S., Grout, V.: Saturday Night or Fever? Context-Aware Music Playlists. In: Proceedings of the 3rd International Audio Mostly Conference of Sound in Motion (2008)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)
Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness. In: CHI 2000 workshop on the what, who, where, when, and how of context-awareness, vol. 4, pp. 1–6 (2000)
Diaz-Aviles, E., Georgescu, M., Nejdl, W.: Swarming to Rank for Recommender Systems. In: Proceedings of the 6th ACM Conference on Recommender Systems. Dublin, Ireland (2012)
Dieleman, S., Brakel, P., Schrauwen, B.: Audio-based music classification with a pretrained convolutional network. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011). Miami, FL, USA (2011)
Donaldson, J.: A Hybrid Social-Acoustic Recommendation System for Popular Music. In: Proceedings of the ACM Recommender Systems (RecSys 2007). Minneapolis, MN, USA (2007)
Dopler, M., Schedl, M., Pohle, T., Knees, P.: Accessing Music Collections via Representative Cluster Prototypes in a Hierarchical Organization Scheme. In: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR’08). Philadelphia, PA, USA (2008)
Dror, G., Koenigstein, N., Koren, Y.: Yahoo! Music Recommendations: Modeling Music Ratings with Temporal Dynamics and Item Taxonomy. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011). Chicago, USA (2011)
Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! Music Dataset and KDD-Cup’11. Journal of Machine Learning Research: Proceedings of KDD-Cup 2011 competition 18, 3–18 (2012)
Elliott, G.T., Tomlinson, B.: Personalsoundtrack: context-aware playlists that adapt to user pace. In: CHI ‘06: CHI ‘06 extended abstracts on Human factors in computing systems, pp. 736–741. ACM, New York, NY, USA (2006)
Farrahi, K., Schedl, M., Vall, A., Hauger, D., Tkalčič, M.: Impact of Listening Behavior on Music Recommendation. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)
Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: Knowledge-based music retrieval for places of interest. In: Proceedings of the 2nd International Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies (MIRUM), pp. 19–24 (2012)
Fields, B.: Contextualize your listening: the playlist as recommendation engine. Ph.D. thesis, Department of Computing Goldsmiths, University of London (2011)
Fields, B., Rhodes, C., Casey, M., Jacobson, K.: Social playlists and bottleneck measurements: Exploiting musician social graphs using content-based dissimilarity and pairwise maximum flow values. In: ISMIR, pp. 559–564 (2008)
Figueiredo, F., Almeida, J.M., Matsubara, Y., Ribeiro, B., Faloutsos, C.: Revisit behavior in social media: The phoenix-r model and discoveries. In: Proceedings of the 7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014). Nancy, France (2014)
Flexer, A., Schnitzer, D., Gasser, M., Widmer, G.: Playlist generation using start and end songs. In: ISMIR, pp. 173–178 (2008)
Foley Jr, J.: The occupational conditioning of preferential auditory tempo: a contribution toward an empirical theory of aesthetics. The Journal of Social Psychology 12(1), 121–129 (1940)
Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the Long Tail: Ordinary People with Extraordinary Tastes. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM 2010). New York, USA (2010)
Green, S.J., Lamere, P., Alexander, J., Maillet, F., Kirk, S., Holt, J., Bourque, J., Mak, X.W.: Generating transparent, steerable recommendations from textual descriptions of items. In: ACM Conf. on Recommender Systems (RecSys’09), pp. 281–284 (2009)
Grimaldi, M., Cunningham, P.: Experimenting with music taste prediction by user profiling. In: ACM SIGMM Int. Workshop on Multimedia Information Retrieval (MIR’04), pp. 173–180 (2004)
Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommendation based on latenttopic sequential patterns. In: Proceedings of the sixth ACM conference on Recommender systems, pp. 131–138. ACM (2012)
Hauger, D., Schedl, M., Košir, A., Tkalčič, M.: The Million Musical Tweets Dataset: What Can We Learn From Microblogs. In: Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013). Curitiba, Brazil (2013)
Haupt, J.: Last.fm: People-powered online radio. Music Reference Services Quarterly 12(1), 23–24 (2009).
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. on Information Systems 22(1), 5–53 (2004).
Herrera, P., Resa, Z., Sordo, M.: Rocking around the clock eight days a week: an exploration of temporal patterns of music listening. In: ACM Conf. on Recommender Systems. Workshop on Music Recommendation and Discovery (Womrad 2010), pp. 7–10 (2010)
Hinton, G., Deng, L., Yu, D., Dahl, G.E., rahman Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N.,, Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29(6), 82–97 (2012)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE Computer Society, Washington, DC, USA (2008)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Eighth IEEE International Conference on Data Mining, ICDM, pp. 263–272 (2008)
Hu, Y., Ogihara, M.: Nextone player: A music recommendation system based on user behaviour. In: Int. Society for Music Information Retrieval Conf. (ISMIR’11) (2011)
Hu, Y., Ogihara, M.: Genre classification for million song dataset using confidence-based classifiers combination. In: Proceedings of the 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (2012)
Humphrey, E.J., Nieto, O., Bello, J.P.: Data driven and discriminative projections for large-scale cover song identification. In: Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013). Curitiba, Brazil (2013)
Jones, N., Pu, P.: User technology adoption issues in recommender systems. In: Networking and Electronic Commerce Research Conf. (2007)
Kaminskas, M., Ricci, F., Schedl, M.: Location-aware Music Recommendation Using Auto-Tagging and Hybrid Matching. In: Proceedings of the 7th ACM Conference on Recommender Systems (RecSys 2013). Hong Kong, China (2013)
Knees, P., Pohle, T., Schedl, M., Widmer, G.: Combining Audio-based Similarity with Web-based Data to Accelerate Automatic Music Playlist Generation. In: Proceedings of the 8th ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR’06). Santa Barbara, CA, USA (2006)
Knees, P., Schedl, M.: A survey of music similarity and recommendation from music context data. ACM Transactions on Multimedia Computing, Communications and Applications 10(1), 2:1–2:21 (2013)
Koenigstein, N., Shavitt, Y., Zilberman, N.: Predicting billboard success using data-mining in p2p networks. In: Multimedia, 2009. ISM’09. 11th IEEE International Symposium on, pp. 465–470. IEEE (2009)
Konecni, V.: Social interaction and musical preference. The psychology of music pp. 497–516 (1982)
Koren, Y., Sill, J.: OrdRec: an Ordinal Model for Predicting Personalized Item Rating Distributions. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011). Chicago, USA (2011)
Levy, M., Sandler, M.: Learning latent semantic models for music from social tags. Journal of New Music Research 37(2), 137–150 (2008)
Li, C.T., Shan, M.K.: Emotion-based impressionism slideshow with automatic music accompaniment. In: MULTIMEDIA ‘07: Proceedings of the 15th international conference on Multimedia, pp. 839–842. ACM Press, New York, NY, USA (2007)
Li, Q., Myaeng, S.H., Kim, B.M.: A probabilistic music recommender considering user opinions and audio features. Information Processing & Management 43(2), 473–487 (2007)
Lim, D., Mcfee, B., Lanckriet, G.R.: Robust structural metric learning. In: S. Dasgupta, D. Mcallester (eds.) Proceedings of the 30th International Conference on Machine Learning (ICML-13), vol. 28, pp. 615–623. JMLR Workshop and Conference Proceedings (2013).
Logan, B.: Content-based Playlist Generation: Exploratory Experiments. In: Proceedings of the 3rd International Symposium on Music Information Retrieval (ISMIR 2002), pp. 295–296. Paris, France (2002)
Logan, B.: Music recommendation from song sets. In: Int. Conf. on Music Information Retrieval (ISMIR’04), pp. 425–428 (2004)
Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: IEEE Int. Conf. on Multimedia and Expo (ICME’01), p. 190 (2001).
Lu, C.C., Tseng, V.S.: A novel method for personalized music recommendation. Expert Systems with Applications 36(6), 10,035–10,044 (2009)
Magno, T., Sable, C.: A comparison of signal-based music recommendation to genre labels, collaborative filtering, musicological analysis, human recommendation, and random baseline. In: Int. Conf. on Music Information Retrieval (ISMIR’08), pp. 161–166 (2008)
Maillet, F., Eck, D., Desjardins, G., Lamere, P.: Steerable playlist generation by learning song similarity from radio station playlists. In: Proceedings of the 10th International Conference on Music Information Retrieval (2009)
McFee, B., Barrington, L., Lanckriet, G.: Learning content similarity for music recommendation. IEEE Trans. on Audio, Speech, and Language Processing 20(8), 2207–2218 (2012).
McFee, B., Bertin-Mahieux, T., Ellis, D., Lanckriet, G.: The million song dataset challenge. In: Proc. of the 4th International Workshop on Advances in Music Information Research (AdMIRe) (2012)
McFee, B., Lanckriet, G.: The Natural Language of Playlists. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR). Miami, FL, USA (2011)
McFee, B., Lanckriet, G.: Hypergraph Models of Playlist Dialects. In: Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal (2012)
McFee, B., Lanckriet, G.R.: Learning multi-modal similarity. Journal of Machine Learning Research 12, 491–523 (2011)
McNee, S., Riedl, J., Konstan, J.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI’06 extended abstracts on Human Factors in Computing Systems, p. 1101 (2006)
Mesnage, C.S.: Social shuffle: music discovery with tag navigation and social diffusion. Ph.D. thesis, Università della Svizzera italiana, Lugano, Switzerland (2011)
Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology 7(4) (2007)
Moh, Y., Orbanz, P., Buhmann, J.M.: Music preference learning with partial information. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’08), pp. 2021–2024 (2008)
Moore, J.L., Chen, S., Joachims, T., Turnbull, D.: Learning to embed songs and tags for playlist prediction. In: 13th International Society for Music Information Retrieval Conference, ISMIR, pp. 349–354 (2012)
Moore, J.L., Chen, S., Joachims, T., Turnbull, D.: Taste over time: The temporal dynamics of user preferences. In: 14th International Society for Music Information Retrieval Conference, ISMIR (2013)
Moore, J.L., Joachims, T., Turnbull, D.: Taste Space Versus the World: An Embedding Analysis of Listening Habits and Geography. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)
North, A., Hargreaves, D.: Situational influences on reported musical preference. Psychomusicology: Music, Mind and Brain 15(1–2), 30–45 (1996)
North, A., Hargreaves, D.: The social and applied psychology of music. Cambridge Univ Press (2008)
Okada, K., Karlsson, B.F., Sardinha, L., Noleto, T.: Contextplayer: Learning contextual music preferences for situational recommendations. In: SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications, p. 6. ACM (2013)
de Oliveira, R., Oliver, N.: Triplebeat: enhancing exercise performance with persuasion. In: Proceedings of the 10th international conference on Human computer interaction with mobile devices and services, pp. 255–264. ACM (2008)
van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger (eds.) Advances in Neural Information Processing Systems 26, vol. 26, p. 9. Neural Information Processing Systems Foundation (NIPS), Lake Tahoe, NV, USA (2013)
Pachet, F.: Knowledge management and musical metadata. Idea Group (2005)
Pachet, F., Roy, P., Cazaly, D.: A combinatorial approach to content-based music selection. Multimedia, IEEE 7(1), 44–51 (2000)
Pampalk, E., Flexer, A., Widmer, G.: Improvements of audio-based music similarity and genre classification. In: Int. Conf. on Music Information Retrieval (ISMIR’05), pp. 628–633 (2005)
Pampalk, E., Pohle, T., Widmer, G.: Dynamic playlist generation based on skipping behavior. In: Int. Conf. on Music Information Retrieval (ISMIR’05), pp. 634–637 (2005)
Park, H.S., Yoo, J.O., Cho, S.B.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In: FSKD 2006. LNCS (LNAI), pp. 970–979. Springer (2006)
Pauws, S., Eggen, B.: PATS: Realization and user evaluation of an automatic playlist generator. In: Proceedings of the 2nd International Symposium on Music Information Retrieval, ISMIR (2002)
Pauws, S., Verhaegh, W., Vossen, M.: Fast generation of optimal music playlists using local search. In: ISMIR, pp. 138–143. Citeseer (2006)
Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997).
Pettijohn, T., Williams, G., Carter, T.: Music for the seasons: Seasonal music preferences in college students. Current Psychology pp. 1–18 (2010)
Platt, J.C., Burges, C.J.C., Swenson, S., Weare, C., Zheng, A.: Learning a gaussian process prior for automatically generating music playlists. In: Advances in Neural Information Processing Systems. MIT Press (2002)
Pohle, T., Knees, P., Schedl, M., Pampalk, E., Widmer, G.: “Reinventing the Wheel”: A Novel Approach to Music Player Interfaces. IEEE Transactions on Multimedia 9, 567–575 (2007)
Pohle, T., Pampalk, E., Widmer, G.: Generating Similarity-based Playlists Using Traveling Salesman Algorithms. In: Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05), pp. 220–225. Madrid, Spain (2005)
Popescu, G., Pu, P.: Probabilistic game theoretic algorithms for group recommender systems. In: Proceedings of the 2nd Workshop on Music Recommendation and Discovery (WOMRAD) (2011)
Ragno, R., Burges, C.J., Herley, C.: Inferring similarity between music objects with application to playlist generation. In: Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval, pp. 73–80. ACM (2005)
Reddy, S., Mascia, J.: Lifetrak: music in tune with your life. In: Proceedings of the 1st ACM International Workshop on Human-centered Multimedia (HCM), pp. 25–34 (2006)
Reed, J., Lee, C.: Preference music ratings prediction using tokenization and minimum classification error training. IEEE Trans. on Audio, Speech, and Language Processing 19(8), 2294–2303 (2011).
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)
Schäfer, T., Sedlmeier, P.: From the functions of music to music preference. Psychology of Music 37(3), 279–300 (2009)
Schedl, M.: #nowplaying Madonna: A Large-Scale Evaluation on Estimating Similarities Between Music Artists and Between Movies from Microblogs. Information Retrieval (2012)
Schedl, M.: Ameliorating Music Recommendation: Integrating Music Content, Music Context, and User Context for Improved Music Retrieval and Recommendation. In: Proceedings of the 11th International Conference on Advances in Mobile Computing & Multimedia (MoMM 2013). Vienna, Austria (2013)
Schedl, M.: Leveraging Microblogs for Spatiotemporal Music Information Retrieval. In: Proceedings of the 35th European Conference on Information Retrieval (ECIR 2013). Moscow, Russia (2013)
Schedl, M., Flexer, A., Urbano, J.: The neglected user in music information retrieval research. Journal of Intelligent Information Systems 41, 523–539 (2013).
Schedl, M., Pohle, T., Knees, P., Widmer, G.: Exploring the Music Similarity Space on the Web. ACM Transactions on Information Systems 29(3), 1–24 (2011)
Schedl, M., Schnitzer, D.: Hybrid Retrieval Approaches to Geospatial Music Recommendation. In: Proceedings of the 36th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR). Dublin, Ireland (2013)
Schedl, M., Vall, A., Farrahi, K.: User Geospatial Context for Music Recommendation in Microblogs. In: Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR). Gold Coast, Australia (2014)
Schedl, M., Widmer, G., Knees, P., Pohle, T.: A music information system automatically generated via web content mining techniques. Information Processing & Management 47(3), 426–439 (2011).
Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of the Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer Society (1994)
Schindler, A., Mayer, R., Rauber, A.: Facilitating comprehensive benchmarking experiments on the million song dataset. In: Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal (2012)
Shani, G., Gunawardana, A.: Evaluating recommender systems. Recommender Systems Handbook pp. 257–298 (2009).
Shao, B., Wang, D., Li, T., Ogihara, M.: Music recommendation based on acoustic features and user access patterns. IEEE Transactions on Audio, Speech, and Language Processing 17(8), 1602–1611 (2009)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 210–217 (1995)
Slaney, M.: Web-scale multimedia analysis: Does content matter? IEEE Multimedia 18(2), 12–15 (2011)
Slaney, M., White, W.: Measuring playlist diversity for recommendation systems. In: 1st ACM workshop on Audio and music computing multimedia, AMCMM ‘06, pp. 77–82. ACM, New York, NY, USA (2006)
Slaney, M., White, W.: Similarity Based on Rating Data. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007). Vienna, Austria (2007)
Sordo, M., Celma, O., Blech, M., Guaus, E.: The quest for musical genres: Do the experts and the wisdom of crowds agree? In: Int. Conf. of Music Information Retrieval (ISMIR’08), pp. 255–260 (2008)
Stupar, A., Michel, S.: Picasso - to sing, you must close your eyes and draw. In: 34th ACM SIGIR Conf. on Research and development in Information, pp. 715–724 (2011)
Su, J.H., Yeh, H.H., Tseng, V.S.: A novel music recommender by discovering preferable perceptual-patterns from music pieces. In: ACM Symp. on Applied Computing (SAC’10), pp. 1924–1928 (2010)
Szymanski, G.: Pandora, or, a never-ending box of musical delights. Music Reference Services Quarterly 12(1), 21–22 (2009).
Tiemann, M., Pauws, S.: Towards ensemble learning for hybrid music recommendation. In: ACM Conf. on Recommender Systems (RecSys’07), pp. 177–178 (2007)
Turnbull, D.R., Barrington, L., Lanckriet, G., Yazdani, M.: Combining audio content and social context for semantic music discovery. In: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 387–394. ACM (2009)
Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. on Speech and Audio Processing 10(5), 293–302 (2002)
Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 99–108. ACM (2012)
Weigl, D., Guastavino, C.: User Studies in the Music Information Retrieval Literature. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011). Miami, FL, USA (2011)
Weston, J., Wang, C., Weiss, R., Berenzweig, A.: Latent Collaborative Retrieval. In: Proceedings of the 29th International Conference on Machine Learning (ICML). Edinburgh, Scotland (2012)
Yang, D., Chen, T., Zhang, W., Lu, Q., Yu, Y.: Local implicit feedback mining for music recommendation. In: Proceedings of the 6th ACM Conference on Recommender Systems, pp. 91–98. ACM (2012)
Yang, Y.H., Chen, H.H.: Machine recognition of music emotion: A review. ACM Trans. Intell. Syst. Technol. 3(3), 40:1–40:30 (2012).
Yoshii, K., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model. IEEE Trans. on Audio, Speech, and Language Processing 16(2), 435–447 (2008).
Zentner, M., Grandjean, D., Scherer, K.R.: Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion 8(4), 494–521 (2008)
Zhang, Y.C., Séaghdha, D.O., Quercia, D., Jambor, T.: Auralist: Introducing serendipity into music recommendation. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ‘12, pp. 13–22. ACM, New York, NY, USA (2012)
Zheleva, E., Guiver, J., Mendes Rodrigues, E., Milić-Frayling, N.: Statistical models of music-listening sessions in social media. In: Proceedings of the 19th international conference on World wide web, WWW ‘10, pp. 1019–1028. ACM, New York, NY, USA (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Schedl, M., Knees, P., McFee, B., Bogdanov, D., Kaminskas, M. (2015). Music Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_13
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7637-6_13
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7636-9
Online ISBN: 978-1-4899-7637-6
eBook Packages: Computer ScienceComputer Science (R0)