Introduction
Recent years have witnessed a tremendous increase in the use of machine learning for biomedical applications. This surge in interest has several causes. One is the successful application of machine learning technologies in other fields such as web search, speech and handwriting recognition, agent design, spatial modeling, etc. Another is the development of technologies that enable the production of large amounts of data in the time it used to take to generate a single data point (run a single experiment). A third most recent development is the advent of electronic medical/health records (EMRs/EHRs). The drastic increase in the amount of data generated has led the biologists and clinical researchers to adopt algorithms that can construct predictive models from large amounts of data. Naturally, machine learning is emerging as a tool of choice.
In this entry, we will present a few data types and tasks involving such large-scale biological data, where machine learning...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Ananiev GE, Goldstein S, Runnheim R, Forrest DK, Zhou S, Potamousis K, Churas CP, Bergendah V, Thomson JA, David C (2008). Schwartz1. Optical mapping discerns genome wide DNA methylation profiles. BMC Mol Biol 9. doi:10.1186/1471-2199-9-68.
Baggerly K, Morris JS, Combes KR (2004) Reproducibility of seldi-tof protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–785
Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Ann Rev Biophys Biomol Struct 30:173–189
Burnside ES, Davis J, Chhatwal J, Alagoz O, Lindstrom MJ, Geller BM, Littenberg B, Kahn CE, Shaffer K, Page D (2009) Unique features of HLA-mediated hiv evolution in a Mexican cohort: a comparative study. Radiology 251:663–672
Carlson J, Valenzuela-Ponce H, Blanco-Heredia J, Garrido-Rodriguez D, Garcia-Morales C, Heckerman D et al (2009) Unique features of HLA-mediated HIV evolution in a Mexican cohort: a comparative study. Retrovirology 6(72):39
Davis J, Santos Costa V, Ray S, Page D (2007a) An integrated approach to feature construction and model building for drug activity prediction. In: Proceedings of the 24th international conference on machine learning (ICML), Corvalis
Davis J, Ong I, Struyf J, Burnside E, Page D, Santos Costa V (2007b) Change of representation for statistical relational learning. In: Proceedings of the 20th international joint conference on artificial intelligence (IJCAI), Hyderabad
DiMaio F, Kondrashov D, Bitto E, Soni A, Bingman C, Phillips G, Shavlik J (2007) Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23:2851–2858
Easton DF, Pooley KA, Dunning AM, Pharoah PD et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093
Finn P, Muggleton S, Page D, Srinivasan A (1998) Discovery of pharmacophores using the inductive logic programming system PROGOL. Mach Learn 30(1,2):241–270
Friedman N (2000) Being Bayesian about network structure. Mach Learn 50:95–125
Friedman N, Halpern J (1999) Modeling beliefs in dynamic systems. Part II: revision and update. J AI Res 10:117–167
Furey TS, Cristianini N, Duffy N, Bednarski BW, Schummer M, Haussler D (2000) Support vector classification and validation of cancer tissue samples using microarray expression. Bioinformatics 16(10):906–914
Getoor L, Taskar B (2007) Introduction to statistical relational learning. MIT, Cambridge
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537
Hardin J, Waddell M, Page CD, Zhan F, Barlogie B, Shaugh-nessy J et al (2004) Evaluation of multiple models to distinguish closely related forms of disease using DNA microarray data: an application to multiple myeloma. Stat Appl Gene Mol Biol 3(1):1018
Jain AN, Dietterich TG, Lathrop RH, Chapman D, Critchlow RE, Bauer BE et al (1994) Compass: a shape-based machine learning tool for drug design. Aided Mol Des 8(6):635–652
Jones KE, Reiser FM, Bryant PGK, Muggleton CH, Kell S, King DB et al (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247–252
KDD Cup (2001) http://pages.cs.wisc.edu/-dpage/kddcup2001/
Klösgen W (2002) Handbook of data mining and knowledge discovery, chapter 16.3: subgroup discovery. Oxford University Press, New York
Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A et al (2004) Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res 10:2725–2737
Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7(7):112
Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico II, Pavlik PA (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 8:751–758
McCarty C, Wilke RA, Giampietro PF, Wesbrook SD, Caldwell MD (2005) Personalized medicine research project (PMRP): design, methods and recruitment for a large population-based biobank. Personal Med 2:49–79
Molla M, Waddell M, Page D, Shavlik J (2004) Using machine learning to design and interpret gene expression microarrays. AI Mag 25(1):23–44
Muggleton S, De Raedt L (1994) Inductive logic programming: theory and methods. J Log Program 19(20):629–679
Noto K, Craven M (2006) A specialized learner for inferring structured cis-regulatorymodules. BMC Bioinform 7(528). doi:10.1186/1471-2105-7-528
Oliver SG, Young M, Aubrey W, Byrne E, Liakata M, Markham M et al (2009) The automation of science. Science 324:85–89
Ong I, Glassner J, Page D (2002) Modelling regulatory pathways in E.coli from time series expression profiles. Bioinformatics 18:241S–248S
Pe’er D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17:215–224
Perou C, Jeffrey S, Van De Rijn M, Rees CA, Eisen MB, Ross, DT et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci 96:9212–9217
Petricoin EF III, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577
Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70 accuracy. J Mol Biol 232:584–599
Segal E, Pe’er D, Regev A, Koller D, Friedman N (2005) Learning module networks. J Mach Learn Res 6:557–588
Spatola A, Page D, Vogel D, Blondell S, Crozet Y (1999) Can machine learning and combinatorial chemistry co-exist? In: Proceedings of the American peptide symposium, Minneapolis. Kluwer Academic
Srinivasan A (2001) The aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci 100:9440–9445
The International Warfarin Pharmacogenetics Consortium (2009) Estimation of the Warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764
Tucker A, Vinciotti V, Hoen PAC, Liu X, Famili AF (2005) Bayesian network classifiers for time-series microarray data. Adv Intell Data Anal VI 3646:475–485
Van’t Veer LL, Dai H, van de Vijver MM, He Y, Hart A, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536
Waddell M, Page D, Shaughnessy J Jr (2005) Predicting cancer susceptibility from single-nucleotide polymorphism data: a case study in multiple myeloma. In: BIOKDD’05: proceedings of the fifth international workshop on bioinformatics, Chicago
Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: European symposium on principles of KDD, Trondheim. Lecture notes in computer science. Springer, pp 78–87
Zhang X, Mesirov JP, Waltz DL (1992) Hybrid system for protein secondary structure prediction. J Mol Biol 225:81–92
Zou M, Conzen SD (2005) A new dynamic Bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21:71–79
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this entry
Cite this entry
Page, C.D., Natarajan, S. (2017). Biomedical Informatics. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_30
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7687-1_30
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7685-7
Online ISBN: 978-1-4899-7687-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering