Skip to main content

Clustering from Data Streams

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining

Abstract

Clustering is one of the most popular data mining techniques. In this article, we review the relevant methods and algorithms for designing cluster algorithms under the data streams computational model, and discuss research directions in tracking evolving clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Recommended Reading

  • Ackermann MR, Martens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) Streamkm++: a clustering algorithm for data streams. ACM J Exp Algorithmics 17:1

    MathSciNet  MATH  Google Scholar 

  • Aggarwal C, Han J, Wang J, Yu P (2003) A framework for clustering evolving data streams. In: Proceedings of twenty-ninth international conference on very large data bases. Morgan Kaufmann, St. Louis, pp 81–92

    Google Scholar 

  • Domingos P, Hulten G (2001) A general method for scaling up machine learning algorithms and its application to clustering. In: Proceedings of international conference on machine learning. Morgan Kaufmann, San Francisco, pp 106–113

    Google Scholar 

  • Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD Explor 2(1):51–57

    Article  Google Scholar 

  • Gama J (2010) Knowledge discovery from data streams. Chapman & Hall/CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Gama J, Rodrigues PP, Lopes L (2011) Clustering distributed sensor data streams using local processing and reduced communication. Intell Data Anal 15(1):3–28

    Google Scholar 

  • Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams: theory and practice. IEEE Trans Knowl Data Eng 15(3):515–528

    Article  Google Scholar 

  • Kranen P, Assent I, Baldauf C, Seidl T (2011) The clustree: indexing micro-clusters for anytime stream mining. Knowl Inf Syst 29(2):249–272

    Article  Google Scholar 

  • Silva JA, Faria E, Barros R, Hruschka E, Carvalho A, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv 46(1):13

    Article  MATH  Google Scholar 

  • Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, pp 706–711

    Google Scholar 

  • Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large databases. In: Proceedings of ACM SIGMOD international conference on management of data. ACM Press, New York, pp 103–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Gama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Gama, J. (2017). Clustering from Data Streams. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_41

Download citation

Publish with us

Policies and ethics