Abstract
Clustering is one of the most popular data mining techniques. In this article, we review the relevant methods and algorithms for designing cluster algorithms under the data streams computational model, and discuss research directions in tracking evolving clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Recommended Reading
Ackermann MR, Martens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) Streamkm++: a clustering algorithm for data streams. ACM J Exp Algorithmics 17:1
Aggarwal C, Han J, Wang J, Yu P (2003) A framework for clustering evolving data streams. In: Proceedings of twenty-ninth international conference on very large data bases. Morgan Kaufmann, St. Louis, pp 81–92
Domingos P, Hulten G (2001) A general method for scaling up machine learning algorithms and its application to clustering. In: Proceedings of international conference on machine learning. Morgan Kaufmann, San Francisco, pp 106–113
Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD Explor 2(1):51–57
Gama J (2010) Knowledge discovery from data streams. Chapman & Hall/CRC Press, Boca Raton
Gama J, Rodrigues PP, Lopes L (2011) Clustering distributed sensor data streams using local processing and reduced communication. Intell Data Anal 15(1):3–28
Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams: theory and practice. IEEE Trans Knowl Data Eng 15(3):515–528
Kranen P, Assent I, Baldauf C, Seidl T (2011) The clustree: indexing micro-clusters for anytime stream mining. Knowl Inf Syst 29(2):249–272
Silva JA, Faria E, Barros R, Hruschka E, Carvalho A, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv 46(1):13
Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, pp 706–711
Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large databases. In: Proceedings of ACM SIGMOD international conference on management of data. ACM Press, New York, pp 103–114
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this entry
Cite this entry
Gama, J. (2017). Clustering from Data Streams. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_41
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7687-1_41
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7685-7
Online ISBN: 978-1-4899-7687-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering