Abstract
K-Means Clustering is a popular clustering algorithm with local optimization. In order to improve its performance, researchers have proposed methods for better initialization and faster computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Recommended Reading
Bei C-D, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans Commun 33:1132–1133
Beil F, Ester M, Xu X (2003) Using the triangle inequality to accelerate k-means. In: Twentieth international conference on machine learning (ICML’03), Washington, DC, pp 147–153
Chen S-H, Hsieh WM (1991) Fast algorithm for VQ codebook design. In: IEE Proceedings I-Communications, Speech and Vision, 138(5):357–362
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18
Jin X, Kim S, Han J, Cao L, Yin Z (2011) A general framework for efficient clustering of large datasets based on activity detection. Stat Anal Data Min 4(1):11–29
Kaukoranta T, Franti P, Nevalainen O (2000) A fast exact gla based code vector activity detection. IEEE Trans Image Process 9(8):1337–1342
Lai JZC et al (2008) A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognit 41(1):315–319
Lloyd SP (1957) Least squares quantization in pcm. Technical report RR-5497, Bell Lab, Sept 1957
MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297
Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: CVPR06, New York
Pelleg D, Moore A (1999) Accelerating exact k-means algorithms with geometric reasoning. In: Proceedings of KDD’99, New York. ACM, pp 277–281
Ra S-W, Kim J-K (1993) A fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE Trans Circuits Syst 40:576–579
Steinley D, Brusco MJ (2007) Initializing k-means batch clustering: a critical evaluation of several techniques. J Classif 24(1):99–121
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this entry
Cite this entry
Jin, X., Han, J. (2017). K-Means Clustering. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_431
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7687-1_431
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7685-7
Online ISBN: 978-1-4899-7687-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering