Abstract
K-Medoids Clustering is a clustering method more robust to outliers than K-Means. Representative algorithms include Partitioning Around Medoids (PAM), CLARA, CLARANS, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Recommended Reading
Chu S-C, Roddick JF, Pan J-S (2008) Improved search strategies and extensions to k-medoids-based clustering algorithms. Int J Bus Intell Data Min 3(2):212–231
Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann Publishers, San Francisco
Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis. Wiley series in probability and statistics. Wiley-Interscience, New York
Ng RT, Han J (2002) CLARANS: a method for clustering objects for spatial data mining. IEEE Trans Knowl Data Eng 14(5):1003–1016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this entry
Cite this entry
Jin, X., Han, J. (2017). K-Medoids Clustering. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_432
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7687-1_432
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7685-7
Online ISBN: 978-1-4899-7687-1
eBook Packages: Computer ScienceReference Module Computer Science and Engineering