Skip to main content

Preference Learning

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining

Abstract

Preference learning refers to the task of learning to predict (contextualized) preferences on a collection of alternatives, which are often represented in the form of an order relation, on the basis of observed or revealed preference information. Supervision in preference learning is typically weak, in the sense that only partial information about sought structures or indirect information about an underlying value function are provided; a common example is feedback in the form of pairwise comparisons between alternatives. Especially important in preference learning are ranking problems, in which preferences are represented in terms of total or partial order relations. Such problems can be approached in two fundamentally different ways, either by learning binary preferences on pairs of alternatives or by inducing an underlying (latent) value function on single alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Boutilier C, Brafman R, Domshlak C, Hoos H, Poole D (2004) CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J AI Res 21:135–191

    MathSciNet  MATH  Google Scholar 

  • Busa-Fekete R, Hüllermeier E (2014) A survey of preference-based online learning with bandit algorithms. In: Proceedings of ALT, 25th international conference on algorithmic learning theory, Bled. Springer, pp 18–39

    Google Scholar 

  • Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: Proceedings of ICML, 24th international conference on machine learning, pp 129–136

    Google Scholar 

  • Cheng W, Hühn J, Hüllermeier E (2009) Decision tree and instance-based learning for label ranking. In: Proceedings of ICML–2009, 26th international conference on machine learning, Montreal, pp 161–168

    Google Scholar 

  • Cheng W, Dembczynski K, Hüllermeier E (2010) Label ranking based on the Plackett-Luce model. In: Proceedings of ICML–2010, international conference on machine learning, Haifa, pp 215–222

    Google Scholar 

  • Cheng W, Hüllermeier E, Waegeman W, Welker V (2012) Label ranking with partial abstention based on thresholded probabilistic models. In: Proceedings of NIPS–2012, 26th annual conference on neural information processing systems, Lake Tahoe

    Google Scholar 

  • Cohen WW, Schapire RE, Singer Y (1999) Learning to order things. J Artif Intell Res 10(1):243–270

    MathSciNet  MATH  Google Scholar 

  • Domshlak C, Hüllermeier E, Kaci S, Prade H (2011) Preferences in AI: an overview. Artif Intell 175(7–8):1037–1052

    Article  MathSciNet  Google Scholar 

  • Fishburn PC (1969) Utility-theory for decision making. Wiley, New York

    MATH  Google Scholar 

  • Fürnkranz J, Hüllermeier E (eds) (2010) Preference learning. Springer, Heidelberg/New York

    MATH  Google Scholar 

  • Fürnkranz J, Hüllermeier E (2010) Preference learning: an introduction. In: Preference learning. Springer, Heidelberg/New York, pp 1–18

    Chapter  Google Scholar 

  • Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Binary decomposition methods for multipartite ranking. In: Proceedings of ECML/PKDD–2009, European conference on machine learning and knowledge discovery in databases, Bled

    Google Scholar 

  • Har-Peled S, Roth D, Zimak D (2002) Constraint classification: a new approach to multiclass classification. In: Proceedings of 13th international conference on algorithmic learning theory, Lübeck. Springer, pp 365–379

    Chapter  Google Scholar 

  • Herbrich R, Graepel T, Bollmann-Sdorra P, Obermayer K (1998) Supervised learning of preference relations. In: Proceedings des Fachgruppentreffens Maschinelles Lernen (FGML-98), pp 43–47

    Google Scholar 

  • Hüllermeier E, Fürnkranz J (2010) On predictive accuracy and risk minimization in pairwise label ranking. J Comput Syst Sci 76(1):49–62

    Article  MathSciNet  MATH  Google Scholar 

  • Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008) Label ranking by learning pairwise preferences. Artif Intell 172:1897–1917

    Article  MathSciNet  MATH  Google Scholar 

  • Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of KDD–02, 8th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, pp 133–142

    Google Scholar 

  • Kamishima T, Kazawa H, Akaho S (2010) A survey and empirical comparison of object ranking methods. In: Fürnkranz J, Hüllermeier E (eds) Preference learning. Springer, Heidelberg/New York, pp 181–202

    Chapter  Google Scholar 

  • Liu TY (2011) Learning to rank for information retrieval. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Schäfer D, Hüllermeier E (2015) Dyad ranking using a bilinear Plackett-Luce model. In: Proceedings of ECML/PKDD–2015, European conference on machine learning and knowledge discovery in databases, Porto

    Google Scholar 

  • Tesauro G (1989) Connectionist learning of expert preferences by comparison training. In: Advances in neural information processing systems 1 (NIPS-88). Morgan Kaufmann, pp 99–106

    Google Scholar 

  • Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6:1453–1484

    MathSciNet  MATH  Google Scholar 

  • Vembu S, Gärtner T (2010) Label ranking: a survey. In: Fürnkranz J, Hüllermeier E (eds) Preference learning. Springer, Heidelberg/New York

    Google Scholar 

  • Zhou Y, Lui Y, Yang J, He X, Liu L (2014) A taxonomy of label ranking algorithms. J Comput 9(3):557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fürnkranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Fürnkranz, J., Hüllermeier, E. (2017). Preference Learning. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_667

Download citation

Publish with us

Policies and ethics