Skip to main content

Evolutionary Robotics

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining
  • 182 Accesses

Abstract

Evolutionary robotics uses evolutionary search methods to fully or partially design robotic systems, including their control systems and sometimes their morphologies and sensor/actuator properties. Such methods are used in a range of ways from the fine-tuning or optimization of established designs to the creation of completely novel designs. There are many applications of evolutionary robotics from wheeled to legged to swimming to flying robots. A particularly active area is the use of evolutionary robotics to synthesize embodied models of complete agent behaviors in order to help explore and generate hypotheses in neurobiology and cognitive science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Beer RD (2003) The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adapt Behav 11(4): 209–243

    Article  Google Scholar 

  • Beer RD, Chiel HJ, Sterling LS (1989) Heterogeneous neural networks for adaptive behavior in dynamic environments. In: Touretzky D (ed) Neural information processing systems, vol 1. Morgan Kauffman, San Francisco, pp 577–585

    Google Scholar 

  • Beer RD, Gallagher JC (1992) Evolving dynamical neural networks for adaptive behaviour. Adapt Behav 1:94–110

    Article  Google Scholar 

  • Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically-inspired approaches to robotics. Commun ACM 40(3):30–38

    Article  Google Scholar 

  • Bongard J (2011) Morphological change in machines accelerates the evolution of robust behavior. Proc Natl Acad Sci 108(4):1234–1239

    Article  Google Scholar 

  • Bongard J, Zykov V, Lipson H (2006) Resilient machines through continuous self-modeling. Science 314:1118–1121

    Article  Google Scholar 

  • Cliff D, Harvey I, Husbands P (1993) Explorations in evolutionary robotics. Adapt Behav 2:73–110

    Article  Google Scholar 

  • de Garis H (1990) Genetic programming: evolution of time dependent neural network modules which teach a pair of stick legs to walk. In: Proceedings of the 9th European conference on artificial intelligence, Stockholm, pp 204–206

    Google Scholar 

  • De Jong KA (2006) Evolutionary computation: a unified approach. MIT Press, Cambridge

    MATH  Google Scholar 

  • Di Paolo E (1998) An investigation into the evolution of communication. Adapt Behav 6(2):285–324

    Article  Google Scholar 

  • Di Paolo EA (2003) Evolving spike-timing dependent plasticity for single-trial learning in robots. Philos Trans R Soc A 361:2299–2319

    Article  MathSciNet  Google Scholar 

  • Doncieux S, Bredeche N, Mouret J-B (eds) (2011) New Horizons in evolutionary robotics: extended contributions from the 2009 EvoDeRob workshop. Studies in computational intelligence, vol 341. Springer, Berlin

    Google Scholar 

  • Eiben AE (2014) Grand challenges for evolutionary robotics. Front Robot AI 1(4). doi:10.3389/frobt.2014.00004

    Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin

    Book  MATH  Google Scholar 

  • Floreano D, Hauert S, Leven S, Zufferey JC (2007) Evolutionary swarms of flying robots. In: Floreano D (ed) Proceedings of the international symposium on flying insects and robots. EPFL, Monte Verita, pp 35–36

    Google Scholar 

  • Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics (Chap. 61). Springer, Berlin, pp 1423–1451

    Google Scholar 

  • Floreano D, Mitri S, Magnenat S, Keller L (2007) Evolutionary conditions for the emergence of communication in robots. Curr Biol 17:514–519

    Article  Google Scholar 

  • Floreano D, Mondada F (1994) Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot. In: Cliff D, Husbands P, Meyer J, Wilson SW (eds) From animals to animats III: proceedings of the third international conference on simulation of adaptive behavior. MIT Press-Bradford Books, Cambridge, pp 402–410

    Google Scholar 

  • Floreano D, Nolfi S (1997) Adaptive behavior in competing co-evolving species. In: Husbands P, Harvey I (eds) Proceedings of the 4th European conference on artificial life. MIT Press, Cambridge, pp 378–387

    Google Scholar 

  • Floreano D, Urzelai J (2000) Evolutionary robots with on-line self-organization and behavioral fitness. Neural Netw 13(4–5):431–443

    Article  Google Scholar 

  • Gallagher J, Beer R, Espenschiel M, Quinn R (1996) Application of evolved locomotion controllers to a hexapod robot. Robot Auton Syst 19(1):95–103

    Article  Google Scholar 

  • Gruau F (1995) Automatic definition of modular neural networks. Adapt Behav 3(2):151–183

    Article  Google Scholar 

  • Gruau F, Quatramaran K (1997) Cellular encoding for interactive evolutionary robotics. In: Husbands P, Harvey I (eds) Proceedings of the 4th European conference on artificial life. The MIT Press/Bradford Books, Cambridge

    Google Scholar 

  • Harvey I, Di Paolo E, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: a new scientific tool for studying cognition. Artif Life 11(1–2):79–98

    Article  Google Scholar 

  • Harvey I, Husbands P, Cliff DT (1994) Seeing the light: artificial evolution, real vision. In: Cliff DT, Husbands P, Meyer JA, Wilson S (eds) From animals to animats 3: proceedings of the third international conference on simulation of adaptive behaviour, SAB94. MIT Press, Cambridge, pp 392–401

    Google Scholar 

  • Harvey I, Husbands P, Cliff D, Thompson A, Jakobi N (1997) Evolutionary robotics: the Sussex approach. Robot Auton Syst 20:205–224

    Article  Google Scholar 

  • Hobbs J, Husbands P, Harvey I (1996) Achieving improved mission robustness. In: 4th European Space Agency workshop on advanced space technologies for robot applications – ASTRA’96, Noordwijk, The Netherlands ESTEC

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Husbands P, Harvey I (1992) Evolution versus design: controlling autonomous mobile robots. In: Proceedings of 3rd annual conference on artificial intelligence, simulation and planning in high autonomy systems. Computer Society Press, Los Alimitos, pp 139–146

    Google Scholar 

  • Husbands P, Moioli R, Shim Y, Philippides A, Vargas P, O’Shea M (2014) Evolutionary robotics and neuroscience. In: Vargas P, Di Paolo E, Harvey I, Husbands P (eds.) The horizons of evolutionary robotics. MIT Press, Cambridge, pp 17–63

    Google Scholar 

  • Jakobi N (1998a) Evolutionary robotics and the radical envelope of noise hypothesis. Adapt Behav 6:325–368

    Article  Google Scholar 

  • Jakobi N (1998b) Running across the reality gap: octopod locomotion evolved in a minimal simulation. In: Husbands P, Meyer JA (eds) Evolutionary robotics: first European workshop, EvoRobot98. Springer, Berlin, pp 39–58

    Chapter  Google Scholar 

  • Jakobi N, Husbands P, Harvey I (1995) Noise and the reality gap: the use of simulations in evolutionary robotics. In: Moran F et al (eds) Proceedings of 3rd European conference on artificial life. Springer, Berlin, pp 704–720

    Google Scholar 

  • Johnson C, Philippides A, Husbands P (2014) Active shape discrimination with physical reservoir computers. In: Proceedings of Alife 14. MIT Press, Cambridge, pp 178–185

    Google Scholar 

  • Lewis MA, Fagg AH, Solidum A (1992) Genetic programming approach to the construction of a neural network for a walking robot. In: Proceedings of IEEE international conference on robotics and automation. IEEE Press, Washington, pp 2618–2623

    Google Scholar 

  • Lipson H, Pollack J (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978

    Article  Google Scholar 

  • Mondada F, Franzi E, Ienne P (1993) Mobile robot miniaturization: a tool for investigation in control algorithms. In: Yoshikawa T, Miyazaki F (eds) Proceedings of the third international symposium on experimental robotics. Springer, Berlin, pp 501–513

    Google Scholar 

  • Mouret J-B, Doncieux S (2012) Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol Comput 20(1):91–133

    Article  Google Scholar 

  • Nolfi S, Floreano D (2000) Evolutionary robotics: the biology. In: Intelligence, and technology of self-organizing machines. MIT Press/Bradford Books, Cambridge

    Google Scholar 

  • Parisi D, Nolfi S (1993) Neural network learning in an ecological and evolutionary context. In: Roberto V (ed) Intelligent perceptual systems. Springer, Berlin, pp 20–40

    Chapter  Google Scholar 

  • Pfeifer R, Bongard J (2007) How the body shapes the way we think: a new view of intelligence. MIT Press, Cambridge

    Google Scholar 

  • Philippides A, Husbands P, Smith T, O’Shea M (2005) Flexible couplings: diffusing neuromodulators and adaptive robotics. Artif Life 11(1&2):139–160

    Article  Google Scholar 

  • Quinn M (2001) Evolving communication without dedicated communication channels. In: Kelemen J, Sosik P (eds) Proceedings of the 6th European conference on artificial life, ECAL’01. Springer, Berlin, pp 357–366

    Google Scholar 

  • Quinn M, Smith L, Mayley G, Husbands P (2003) Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 361:2321–2344

    Article  MathSciNet  Google Scholar 

  • Reil T, Husbands P (2002) Evolution of central pattern generators for bipedal walking in real-time physics environments. IEEE Trans Evol Comput 6(2): 10–21

    Article  Google Scholar 

  • Seth AK (2005) Causal connectivity analysis of evolved neural networks during behavior. Netw Comput Neural Syst 16(1):35–54

    Article  Google Scholar 

  • Shim YS, Husbands P (2007) Feathered flyer: integrating morphological computation and sensory reflexes into a physically simulated flapping-wing robot for robust flight Manoeuvre. In: Proceedings of ECAL. LNCS, vol 4648. Springer, Berlin, pp 756–765

    Google Scholar 

  • Sims K (1994) Evolving 3D morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of artificial life IV. MIT Press, Cambridge, pp 28–39

    Google Scholar 

  • Stanley K, D’Ambrosio D, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural networks. Artif Life 15(2):185–212

    Article  Google Scholar 

  • Tllez R, Angulo C, Pardo D (2006) Evolving the walking behaviour of a 12 DOF quadruped using a distributed neural architecture. In: 2nd international workshop on biologically inspired approaches to advanced information technology (Bio-ADIT’2006). LNCS, vol 385. Springer, Berlin, pp 5–19

    Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  • Urzelai J, Floreano D (2001) Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Evol Comput 9:495–524

    Article  MATH  Google Scholar 

  • Vargas P, Di Paolo E, Harvey I, Husbands P (2014) The horizons of evolutionary robotics. MIT Press, Cambridge

    Google Scholar 

  • Vaughan E, Di Paolo EA, Harvey I (2004) The evolution of control and adaptation in a 3D powered passive dynamic walker. In: Pollack J, Bedau M, Husbands P, Ikegami T, Watson R (eds) Proceedings of the ninth international conference on the simulation and synthesis of living systems artificial life IX. MIT Press, Cambridge, pp 139–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Husbands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Husbands, P. (2017). Evolutionary Robotics. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_94

Download citation

Publish with us

Policies and ethics