Skip to main content

Symmetrization Lemma

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining
  • 90 Accesses

Synonyms

Basic lemma

Definition

Given a distribution P over a sample space \(\mathcal{Z}\), a finite sample \(\mathbf{z} = (z_{1},\ldots,z_{n})\) drawn i.i.d. from P and a function \(f : \mathcal{Z}\rightarrow \mathbb{R}\) we define the shorthand \(\mathbb{E}_{P}f = \mathbb{E}_{P}[f(z)]\) and \(\mathbb{E}_{\mathbf{z}}f = \frac{1} {n}\sum _{i-1}^{n}f(z_{ i})\) to denote the true and empirical average of f. The symmetrization lemma is an important result in the learning theory as it allows the true average \(\mathbb{E}_{P}f\) found in generalization bounds to be replaced by a second empirical average \(\mathbb{E}_{\mathbf{z}^{{\prime}}}f\) taken over an independent ghost sample\(\mathbf{z}^{{\prime}} = z_{1}^{{\prime}},\ldots z_{n}^{{\prime}}\) drawn i.i.d. from P. Specifically, the symmetrization lemma states that for any ε > 0 whenever n ε2 ≥ 2

$$\displaystyle\begin{array}{rcl} & & P^{n}\left (\sup \limits _{ f\in \mathbb{F}}\vert \mathbb{E}_{P}f -...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

(2017). Symmetrization Lemma. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_970

Download citation

Publish with us

Policies and ethics