Skip to main content

Abstract

This paper deals with the inverse problem of the wave equation, which is of relevance in fields such as ultrasound tomography, seismic imaging, and nondestructive testing. We study the linearized problem by Fourier analysis, and we describe an iterative reconstruction method for the fully nonlinear problem in the time domain. We discuss practical problems such as the spectral incompleteness in reflection imaging and finding a good initial approximation. We demonstrate by numerical reconstructions from synthetic data what can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belishev, M.I., Gotlib, V.Yu: Dynamical variant of the BC-method: theory and numerical testing. J. Inv. Ill-Posed Prob. 7, 221–240 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Bingham, K., Kurylev, Y., Lassas, M., Siltanen, S.: Iterative time-reversal control for inverse problems. Inverse Prob. Imaging 2, 63–81 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borcea, L., Papanicolaou, G., Tsogka, C.: Theory and application of time reversal and interferometric imaging. Inverse Prob. 19, S139–S164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borup, D.T., Johnson, S.A., Kim, W.W., Berggren, M.J.: Nonperturbative diffraction tomography via Gauss–Newton iteration applied to the scattering integral equation. Ultrason. Imaging 14, 69–85 (1992)

    Article  Google Scholar 

  5. Bounheim, A., et al.: FETD simulation of wave propagation modeling the Cari breast sonography. In: Kumar et al. (eds.) Lecture Notes in Computer Science, vol. 2668, pp. 705–714. Springer, New York (2003)

    Google Scholar 

  6. Burger, M., Kaltenbacher, B.: Regularizing Newton–Kaczmarz methods for nonlinear ill-posed problems. SIAM J. Numer. Anal. 44,153–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burov, A.V., Morozov, S.A., Rumyantseva, O.D.: Reconstruction of fine-scale structure of acoustical scatterer on large-scale contrast background. In: Acoustical Imaging, vol. 26, pp. 231–238. Kluwer Academic/Plenum, New York (2006)

    Google Scholar 

  8. Chen, Yu: Inverse scattering via Heisenberg’s uncertainty principle. Inverse Prob. 13, 253–282 (1997)

    Article  MATH  Google Scholar 

  9. Claerbout, J.F.: Fundamentals of Geophysical Data Processing. McGraw-Hill, New York (1976)

    Google Scholar 

  10. Claerbout, J.F.: Imaging the Earth’s Interior. Blackwell, Oxford (1985)

    Google Scholar 

  11. Clemmow, P.: The Plane Wave Spectrum Representation of Electromagnetic Fields. Oxford University Press, New York (1996)

    Book  MATH  Google Scholar 

  12. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  13. DeHoop, M.: Microlocal analysis of seismic inverse scattering. In: Uhlmann, G. (ed.) Inside Out, pp. 219–296. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Devaney, A.J.: A filtered backpropagation algorithm for diffraction tomography. Ultrason. Imaging 4, 336–350 (1982)

    Article  Google Scholar 

  15. Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  16. Dierkes, T., Dorn, O., Natterer, F., Palamodov, V., Sielschott, H.: Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62, 2092–2113 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Divakar, S.: 3D Ultrasound Medical Imaging from Reflection Data. Master’s thesis, Audiovisual Communications Laboratory (LCAV), École Polytechnique Fédérale de Lausanne (2013)

    Google Scholar 

  18. Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Prob. 22, R67–R131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dragoset, B., Gabitsch, J.: Introduction to this special section: low-frequency seismic. Lead. Edge 26, 34–36 (2007)

    Article  Google Scholar 

  20. Duric, N., et al.: Development of ultrasound tomography for breast imaging: technical assessment. Med. Phys. 32, 1375–1386 (2005)

    Article  Google Scholar 

  21. Dussik, K.T.: Über die Möglichkeit hochfrequente mechanische Schwingungen als diagnostische Hilfsmittel zu verwenden. Z. f. d. ges. Neurol. u. Psychiat. 174, 143 (1942)

    Google Scholar 

  22. Gauthier, O., Virieux, J., Tarantola, A.: Two-dimensional nonlinear inversion of seismic waveforms: numerical results. Geophysics 51, 1387–1403 (1986)

    Article  Google Scholar 

  23. Goncharsky, A.V., Romanov, S.Y: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Prob. 29, 075004 (2013)

    Article  MathSciNet  Google Scholar 

  24. Gutman, S., Klibanov, M.: Iterative method for multi-dimensional inverse scattering problems at fixed frequencies. Inverse Prob. 10, 573–599 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herman, G.T.: Image Reconstruction from Projections. Academic, London (1980)

    MATH  Google Scholar 

  26. Hesse, M.C., Salehi, L., Schmitz, G.: Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging. Phys. Med. Biol. 58, 6163–6178 (2013)

    Article  Google Scholar 

  27. Hohage, T.: On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Prob. 17(2001), 1743–1763 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hristova Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Prob. 24, 055006 (2008)

    Article  MathSciNet  Google Scholar 

  29. Isakov, V.: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127. Springer, New York (1998)

    Google Scholar 

  30. Jannane, M., et al.: Wavelengths of earth structures that can be resolved from seismic reflection data. Geophysics 54, 906–910 (1989)

    Article  Google Scholar 

  31. Jonas, P., Louis, A.K.: Phase contrast tomography using holographic measurements. Inverse Prob. 20, 75–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kac, A.C., Slaney, M.: Principle of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    Google Scholar 

  33. Kleinman, R.E., van den Berg, P.M.: A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math. 42, 17–36 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kosloff, D., Baysal, E.: Migration with the full acoustic wave equation. Geophysics 48, 677–687 (1983)

    Article  Google Scholar 

  35. Mora, P.: Inversion = migration + tomography. Geophysics 54, 1575–1586 (1989)

    Article  Google Scholar 

  36. Morgan, S.P.: General solution of the Luneburg lens problem. J. Appl. Phys. 29, 1358–1368 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nachman, A.I.: Reconstructions from boundary measurements. Ann. Math. 128, 531–576 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Natterer, F.: Numerical solution of bilinear inverse problems, Technical Report 19/96-N. Fachbereich Mathematik und Informatik der Universität Münster (1996)

    Google Scholar 

  39. Natterer, F.: An algorithm for 3D ultrasound tomography. In: Chavent, G., Sabatier, P. (eds.) Inverse Problems of Wave Propagation. Lecture Notes in Physics, pp. 216–225. Springer, New York (1997)

    Chapter  Google Scholar 

  40. Natterer, F.: An algorithm for the fully nonlinear inverse scattering problem at fixed frequency. J. Comput. Acoust. 9, 935–940 (2001)

    Article  MathSciNet  Google Scholar 

  41. Natterer, F.: An error bound for the Born approximation. Inverse Prob. 20, 447–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Natterer, F.: Ultrasound tomography with fixed linear arrays of transducers. In: Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Pisa (2007)

    Google Scholar 

  43. Natterer, F.: Reflectors in wave equation imaging. Wave Motion 45, 776–784 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Natterer, F.: Acoustic imaging in 3D. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems. Medical Physics, Madison (2009)

    Google Scholar 

  45. Natterer, F.: Ultrasound mammography with a mirror. Phys. Med. Biol. 55, N275–N299 (2010)

    Article  Google Scholar 

  46. Natterer, F.: Reflection imaging without low frequencies. Inverse Prob. 27, 035011 (2011)

    Article  MathSciNet  Google Scholar 

  47. Natterer, F.: Reflection imaging of layered media without using low frequencies. Inverse Prob. 29, 035001 (2013)

    Article  MathSciNet  Google Scholar 

  48. Natterer, F., Klyubina, O.: Initial value techniques for the Helmholtz and Maxwell equations. J. Comput. Math. 25, 368–373 (2007)

    MathSciNet  Google Scholar 

  49. Natterer, F., Wübbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Prob. 11, 1225–1232 (1995)

    Article  MATH  Google Scholar 

  50. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  51. Natterer, F., Wübbeling, F.: Marching schemes for inverse acoustic scattering problems. Numer. Math. 100, 697–710 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Novikov, R.G.: The \(\bar{\partial }\)-approach to approximate inverse scattering at fixed energy in three dimensions. Int. Math. Res. Pap. 6, 287–349 (2005)

    Article  Google Scholar 

  53. Palamodov, V.P.: Stability of diffraction tomography and a nonlinear “basic theorem”. J. Anal. Math 91, 247–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Palamodov, V.: Inverse scattering as nonlinear tomography. Wave Motion 47, 635–640 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  55. Pestov, L., Bolgova V., Kazarina, O.: Numerical recovering of a density by the BC-method. Inverse Prob. Imaging 2, 703–712 (2008)

    MathSciNet  Google Scholar 

  56. Pintavirooj, C., Sangworasil, M.: Ultrasonic diffraction tomography. Int. J. Appl. Biomed. Eng. 1, 34–40 (2008)

    Google Scholar 

  57. Prada, C., Kerbrat, E., Cassereau, D., Fink, M.: Time reversal techniques in ultrasonic nondestructive testing of scattering media. Special section on electromagnetic and ultrasonic nondestructive evaluation. Inverse Prob. 18, 1761–1773 (2002)

    MATH  MathSciNet  Google Scholar 

  58. Richter, K.: Clinical amplitude/velocity reconstructive imaging (CARI) - a new sonographic method for detecting breast lesions. Br. J. Radiol. 68, 375–384 (1995)

    Article  Google Scholar 

  59. Sandberg, K., Beylkin, G.: Full wave-equation depth extrapolation for migration. Geophysics 74, WCA121–WCA128 (2009)

    Article  Google Scholar 

  60. Santosa, F., Symes, W.W.: An Analysis of Least-Squares Velocity Inversion. Geophysical Monographs Series, vol. 4. Society of Exploration Geophysics, Tulsa (1989)

    Google Scholar 

  61. Sielschott, H.: Rückpropagationsverfahren für die Wellengleichung in bewegtem Medium. Ph.D. thesis, Preprints Angewandte Mathematik und Informatik, 15/00-N, Münster, Germany (2000). www.math.uni-muenster.de/num/Preprints/2000/sielsch

  62. Sirgue, L., Pratt, R.G.: Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69, 231–248 (2004)

    Article  Google Scholar 

  63. Symes, W.W.: The seismic reflection inverse problem. Inverse Prob. 25, 123008, 39 pp. (2009)

    Google Scholar 

  64. Wu, R., Toksöz, M.N.: Diffraction tomography and multisource holography applied to seismic imaging. Geophysics 52, 11–25 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Natterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Natterer, F. (2015). Sonic Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_37

Download citation

Publish with us

Policies and ethics