Skip to main content

Statistical Methods in Imaging

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

The theme of this chapter is statistical methods in imaging, with a marked emphasis on the Bayesian perspective. The application of statistical notions and techniques in imaging requires that images and the available data are redefined in terms of random variables, the genesis and interpretation of randomness playing a major role in deciding whether the approach will be along frequentist or Bayesian guidelines. The discussion on image formation from indirect information, which may come from non-imaging modalities, is coupled with an overview of how statistics can be used to overcome the hurdles posed by the inherent ill-posedness of the problem. The statistical counterpart to classical inverse problems and regularization approaches to contain the potentially disastrous effects of ill-posedness is the extraction and implementation of complementary information in imaging algorithms. The difficulty in expressing quantitative and uncertain notions about the imaging problem at hand in qualitative terms, which is a major challenge in a deterministic context, can be more easily overcome once the problem is expressed in probabilistic terms. An outline of how to translate some typical qualitative traits into a format which can be utilized by statistical imaging algorithms is presented. In line with the Bayesian paradigm favored in this chapter, basic principles for the construction of priors and likelihoods are presented, together with a discussion of numerous computational statistics algorithms, including maximum likelihood estimators, maximum a posteriori and conditional mean estimators, expectation maximization, Markov chain Monte Carlo, and hierarchical Bayesian models. Rather than aiming to be a comprehensive survey, the present chapter hopes to convey a wide and opinionated overview of statistical methods in imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Schweiger, M., Somersalo, E., Tarvainen, T., Vauhkonen, M.: Approximation errors and model reduction with an application in optical diffusion tomography. Inverse. Probl. 22, 175–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardsley, J., Vogel, C.R.: A nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25, 1326–1343 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bernardo, J.: Bayesian Theory. Wiley, Chichester (2000)

    MATH  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP, Bristol (1998)

    Book  MATH  Google Scholar 

  5. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Stat. R. Soc. 36, 192–236 (1974)

    MATH  MathSciNet  Google Scholar 

  6. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48, 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  7. Besag, J., Green, P.: Spatial statistics and Bayesian computation. J. R. Stat. Soc. B 55, 25–37 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  9. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  10. Boyles, R.A.: On the convergence of the EM algorithm. J. R. Stat. Soc. B 45, 47–50 (1983)

    MATH  MathSciNet  Google Scholar 

  11. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Calvetti, D.: Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective. J. Comput. Appl. Math. 198, 378–395 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Calvetti, D., Somersalo, E.: Statistical compensation of boundary clutter in image deblurring. Inverse Probl. 21, 1697–1714 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Calvetti, D., Somersalo, E.: Introduction to Bayesian Scientific Computing – Ten Lectures on Subjective Probability. Springer, Berlin (2007)

    Google Scholar 

  15. Calvetti, D., Somersalo, E.: Hypermodels in the Bayesian imaging framework. Inverse Probl. 24, 034013 (2008)

    Article  MathSciNet  Google Scholar 

  16. Calvetti, D., Hakula, H., Pursiainen, S., Somersalo, E.: Conditionally Gaussian hypermodels for cerebral source localization. SIAM J. Imaging Sci. 2, 879–909 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cramér, H.: Mathematical Methods in Statistics. Princeton University Press, Princeton (1946)

    Google Scholar 

  18. De Finetti, B.: Theory of Probability, vol 1. Wiley, New York (1974)

    Google Scholar 

  19. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  20. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  21. Donatelli, M., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions. Inverse Probl. 22, 2035–2053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Franklin, J.N.: Well-posed stochastic extension of ill-posed linear problem. J. Math. Anal. Appl. 31, 682–856 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fox, C., Nicholls, G.: Exact MAP states and expectations from perfect sampling: Greig, Porteous and Seheult revisited. AIP Conf. Proc. ISSU 568, 252–263 (2001)

    Article  MathSciNet  Google Scholar 

  24. Gantmacher, F.R.: Matrix Theory. AMS, New York (1990)

    Google Scholar 

  25. Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and Bayesian rerstoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  27. Geyer, C.: Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–511 (1992)

    Article  Google Scholar 

  28. Golub, G., VanLoan, C.F.: Matrix Computations. Johns Hopkins University Press, London (1996)

    MATH  Google Scholar 

  29. Green, P.J.: Bayesian reconstructions from emission tomography data using modified EM algorithm. IEEE Trans. Med. Imaging 9, 84–93 (1990)

    Article  Google Scholar 

  30. Green, P.J., Mira, A.: Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88, 1035–1053 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  33. Hansen, P.C.: Rank-Deficient and Ill-Posed Inverse Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  34. Hansen, P.C.: Discrete Inverse Problems. Insights and Algorithms. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  35. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  36. Herbert, T., Leahy, R.: A generalized EM algorithm for 3D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. Med. Imaging 8, 194–202 (1989)

    Article  Google Scholar 

  37. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  38. Huttunen, J.M.J., Kaipio, J.P.: Model reduction in state identification problems with an application to determination of thermal parameters. Appl. Numer. Math. 59, 877–890 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jeffreys, H.: An invariant form for the prior probability in estimation problem. Proc. R. Soc. Lond. A 186, 453–461 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ji, S., Carin, L.: Bayesian compressive sensing and projection optimization. In: Proceedings of 24th International Conference on Machine Learning, Cornvallis (2007)

    Book  Google Scholar 

  41. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, Berlin (2004)

    Google Scholar 

  42. Kaipio, J.P., Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 198, 493–504 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kelley, T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  44. Lagendijk, R.L., Biemond, J.: Iterative Identification and Restoration of Images. Kluwer, Boston (1991)

    Book  MATH  Google Scholar 

  45. Laksameethanasan, D., Brandt, S.S., Engelhardt, P., Renaud, O., Shorte, S.L.: A Bayesian reconstruction method for micro-rotation imaging in light microscopy. Microsc. Res. Tech. 71, 158–167 (2007)

    Article  Google Scholar 

  46. LeCam, L.: Asymptotic Methods in Statistical Decision Theory. Springer, New York (1986)

    Google Scholar 

  47. Lehikoinen, A., Finsterle, S., Voutilainen, A., Heikkinen, L.M., Vauhkonen, M., Kaipio, J.P.: Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl. Imaging 1, 371–389 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2003)

    Google Scholar 

  49. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974)

    Article  Google Scholar 

  50. Melsa, J.L., Cohn, D.L.: Decision and Estimation Theory. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  51. Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  52. Mugnier, L.M., Fusco, T., Conan, J.-L.: Mistral: a myopic edge-preserving image restoration method, with application to astronomical adptive-optics-corrected long-exposure images. J. Opt. Soc. Am. A 21, 1841–1854 (2004)

    Article  MathSciNet  Google Scholar 

  53. Nummelin, E.: MC’s for MCMC’ists. Int. Stat. Rev. 70, 215–240 (2002)

    Article  MATH  Google Scholar 

  54. Ollinger, J.M., Fessler, J.A.: Positron-emission tomography. IEEE Signal Proc. Mag. 14, 43–55 (1997)

    Article  Google Scholar 

  55. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. TOMS 8, 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  56. Paige, C.C., Saunders, M.A.: Algorithm 583; LSQR: sparse linear equations and least-squares problems. TOMS 8, 195–209 (1982)

    Article  MathSciNet  Google Scholar 

  57. Richardson, H.W.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972)

    Article  Google Scholar 

  58. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  MATH  Google Scholar 

  59. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  60. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imaging MI-1, 113–122 (1982)

    Article  Google Scholar 

  61. Smith, A.F.M., Roberts, R.O.: Bayesian computation via Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. B 55, 3–23 (1993)

    MATH  MathSciNet  Google Scholar 

  62. Snyder, D.L.: Random Point Processes. Wiley, New York (1975)

    MATH  Google Scholar 

  63. Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. 114, 1051–1069 (2002)

    Article  Google Scholar 

  64. Tan, S.M., Fox, C., Nicholls, G.K.: Lecture notes (unpublished), Chap 9. http://www.math.auckland.ac.nz/

  65. Tierney, L.: Markov chains for exploring posterior distributions. Ann. Stat. 22, 1701–1762 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  66. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MATH  MathSciNet  Google Scholar 

  67. Tipping, M.E., Faul, A.C.: Fast marginal likelihood maximisation for sparse Bayesian models. In: Proceedings of the 19th International Workshop on Artificial Intelligence and Statistics, Key West, 3–6 Jan 2003

    Google Scholar 

  68. Van Kempen, G.M.P., Van Vliet, L.J., Verveer, P.J.: A quantitative comparison of image restoration methods in confocal microscopy. J. Microsc. 185, 354–365 (1997)

    Article  Google Scholar 

  69. Wei, G.C.G., Tanner, M.A.: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algoritms. J. Am. Stat. Assoc. 85, 699–704 (1990)

    Article  Google Scholar 

  70. Wu, J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)

    Article  MATH  Google Scholar 

  71. Zhou, J., Coatrieux, J.-L., Bousse, A., Shu, H., Luo, L.: A Bayesian MAP-EM algorithm for PET image reconstruction using wavelet transform. Trans. Nucl. Sci. 54, 1660–1669 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Calvetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Calvetti, D., Somersalo, E. (2015). Statistical Methods in Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_53

Download citation

Publish with us

Policies and ethics