Abstract
Nonrigid shapes are ubiquitous in nature and are encountered at all levels of life, from macro to nano. The need to model such shapes and understand their behavior arises in many applications in imaging sciences, pattern recognition, computer vision, and computer graphics. Of particular importance is understanding which properties of the shape are attributed to deformations and which are invariant, i.e., remain unchanged. This chapter presents an approach to nonrigid shapes from the point of view of metric geometry. Modeling shapes as metric spaces, one can pose the problem of shape similarity as the similarity of metric spaces and harness tools from theoretical metric geometry for the computation of such a similarity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, C.C., Franzosa, R.: Introduction to Topology: Pure and Applied. Prentice-Hall, Harlow (2008)
Aizawa, A.: An information-theoretic perspective of TF–IDF measures. Inf. Process. Manag. 39(1), 45–65 (2003)
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discret. Comput. Geom. 3, 237–256 (1988)
Andreetto, M., Brusco, N., Cortelazzo, G.M.: Automatic 3D modeling of textured cultural heritage objects. Trans. Image Process. 13(3), 335–369 (2004)
Assfalg, J., Bertini, M., Pala, P., Del Bimbo, A.: Content-based retrieval of 3D objects using spin image signatures. Trans. Multimed. 9(3), 589–599 (2007)
Atallah, M.J.: On symmetry detection. IEEE Trans. Comput. c-34(7), 663–666 (1985)
Aurenhammer, F.: Voronoi diagramsa survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision (ECCV), Graz, pp. 404–417 (2006)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 13, 1373–1396 (2003). Introduction of Laplacian embeddings
Bellman, R.E.: Dynamic Programming. Dover, New York (2003)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24, 509–522 (2002)
Ben-Chen, M., Weber, O., Gotsman, C.: Characterizing shape using conformal factors. In: Proceedings of 3DOR, Crete (2008)
Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994)
Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds, Technical report (2000)
Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 14(2), 239–256 (1992). Introduction of ICP
Bjorck, A.A.: Numerical Methods for Least Squares Problems. Society for Industrial Mathematics, Philadelphia (1996)
Borg, I., Groenen, P.: Modern Multidimensional Scaling – Theory and Applications. Comprehensive Overview of MDS Problems and Their Numerical Solution. Springer, New York (1997)
Bronstein, A.M., Bronstein, M.M.: Not only size matters: regularized partial matching of nonrigid shapes. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR Workshops), Anchorage (2008)
Bronstein, A.M., Bronstein, M.M.: Regularized partial matching of rigid shapes. In: Proceedings of European Conference on Computer Vision (ECCV), Marseille, pp. 143–154 (2008)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant 3D face recognition. In: Proceedings of Audio and Video-Based Biometric Person Authentication, Guildford. Lecture Notes in Computer Science, vol. 2688, pp. 62–69 (2003). Springer, Berlin. 3D face recognition using metric model
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: On isometric embedding of facial surfaces into S3. In: Proceedings of International Conference Scale Space and PDE Methods in Computer Vision, Hofgeismar. Lecture Notes in Computer Science, vol. 3459, pp. 622–631. Springer, New York (2005). MDS with spherical geometry
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. (IJCV) 64(1), 5–30 (2005). 3D face recognition using metric model
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006). Computation of the Gromov-Hausdorff distance using GMDS
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. (PNAS) 103(5), 1168–1172 (2006). Introduction of generalized MDS
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Robust expression-invariant face recognition from partially missing data. In: Proceedings of European Conference on Computer Vision (ECCV), Graz, pp. 396–408 (2006). 3D face recognition with partially missing data
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008). First systematic treatment of non-rigid shapes
Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. (IJCV) 84(2), 163–183 (2009)
Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. (IJCV) 89(2–3), 266–286 (2010)
Bronstein, A.M., Bronstein, M.M., Ovsjanikov, M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proceedings of Non-rigid Shapes and Deformable Image Alignment (NORDIA) (2009)
Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Isipiran, I., Kokkinos, I., Murino, V., Ovsjanikov, M., Patané, G., Spagnuolo, M., Sun, J.: Robust feature detection and description benchmark. In: Proceedings of 3DOR, Firenze (2010)
Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral Distances. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2010, in press)
Bronstein, M.M., Bronstein, A.M., Kimmel, R., Yavneh, I.: Multigrid multidimensional scaling. Numer. Linear Algebra Appl. 13(2–3), 149–171 (2006). Multigrid solver for MDS problems
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco (2010)
Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. AMS, Providence (2001). Systematic introduction to metric geometry
Chan, T.F., Vese, L.A.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods, Beijing, pp. 161–168 (2001)
Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of Conference on Robotics and Automation, Sacramento (1991). Introduction of ICP
Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of International Conference on Computer Vision (ICCV), Rio de Janeiro (2007)
Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification for surfaces based on moment analysis. Trans. Vis. Comput. Graph. 10(5), 516–524 (2004)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006). Definition of diffusion distance
Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. (PNAS) 102(21), 7426–7431 (2005). Introduction of diffusion maps and diffusion distances
Cox, T.F., Cox, M.A.: Multidimensional Scaling. Chapman & Hall, London (1994)
Crandal, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–43 (1983)
Dalai, N., Triggs, B.: Histograms of oriented gradients for human Detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego (2005)
De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Recent Developments in Statistics, pp. 133–145. North-Holland, Amsterdam (1977)
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (2006)
Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In: Proceedings of 3DPVT, Paris (2010)
Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, pp. 168–174 (2001). Introduction of canonical forms
Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 25(10), 1285–1295 (2003). Introduction of canonical forms
Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)
Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of Symposium on Geometry Processing (SGP), Vienna (2005)
Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Boston (1992)
Glomb, P.: Detection of interest points on 3D data: extending the Harris operator. In: Computer Recognition Systems 3. Advances in Soft Computing, vol. 57, pp. 103–111. Springer, Berlin/Heidelberg (2009)
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 18, 377–388 (1996)
Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of the drum. Bull. AMS 27(1), 134–138 (1992). Example of isospectral but non-isometric shapes
Gromov, M.: Structures Métriques Pour les Variétés Riemanniennes. In: Textes Mathématiques, vol. 1 (1981). Introduction of the Gromov-Hausdorff distance
Gu, X., Gortler, S., Hoppe, H.: Geometry images. In: Proceedings of SIGGRAPH, San Antonio, pp. 355–361 (2002)
Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of Fourth Alvey Vision Conference, Manchester, pp. 147–151 (1988)
Hausdorff, F.: Grundzüge der Mengenlehre, Definition of the Hausdorff Distance. Verlag Veit & Co, Leipzig (1914)
Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10, 180–184 (1985)
Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: 3rd International Workshop on Statistical and Computational Theories of Vision, Nice (2003)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 21(5), 433–449 (1999)
Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966). Kac’s conjecture about isospectral but non-isometric shapes
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. (PNAS) 95(15), 8431–8435 (1998)
Kolomenkin, M., Shimshoni, I., Tal, A.: On edge detection on surfaces. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Miami (2009)
Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: message-passing revisited. In: Proceedings of International Conference on Computer Vision (ICCV), Rio de Janeiro (2007)
Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: Proceedings of Symposium on Computational Geometry, Hong Kong, pp. 341–349 (2000)
Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: International Conference on Shape Modeling and Applications, Matsushima (2006). The use of Laplace-Belrami operator for shape analysis and synthesis
Lloyd, S.P.: Least squares quantization in PCM. Bell telephone laboratories paper (1957)
Losasso, F., Hoppe, H., Schaefer, S., Warren, J.: Smooth geometry images. In: Proceedings of Symposium on Geometry Processing (SGP), Aachen, pp. 138–145 (2003)
Lowe, D.: Distinctive image features from scale-invariant keypoint. Int. J. Comput. Vis. (IJCV) 60, 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage (2008)
Max, J.: Quantizing for minimum distortion. IEEE Trans. Inf. Theory 6(1), 7–12 (1960)
Mémoli, F.: On the use of Gromov-Hausdorff distances for shape Comparison. In: Proceedings of Point Based Graphics, Prague (2007). Definition of the Gromov-Wasserstein distance
Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: Proceedings of Non-rigid Shapes and Deformable Image Alignment (NORDIA) (2008). Relation of Gromov-Hausdorff distances in Euclidean spaces to Hausdorff and ICP distances
Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(1), 764–795 (2001)
Mémoli, F., Sapiro, G.: Distance functions and geodesics on submanifolds of Rd and point clouds. SIAM J. Appl. Math. 65(4), 1227 (2005)
Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5, 313–346 (2005). First use of the Gromov-Hausdorff distance in shape recognition
Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57 (2003). Cotangent weights discretization of the Laplace-Beltrami operator
Mitra, N.J., Bronstein, A.M., Bronstein, M.M.: Intrinsic regularity detection in 3D geometry. In: Proceedings of European Conference on Computer Vision (ECCV), Heraklion (2010)
Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of Eurographics Symposium on Geometry Processing, Aachen, pp. 23–32 (2004). Analysis of ICP algorithms from optimization standpoint
Mitra, N.J., Guibas, L.J., Giesen, J., Pauly, M.: Probabilistic fingerprints for shapes. In: Proceedings of Symposium on Geometry Processing (SGP), Cagliari, Sardinia (2006)
Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. (TOG) 25(3), 560–568 (2006)
Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956). Nash embedding theorem
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. (TOG) 21(4), 807–832 (2002). Introduction of the shape distributions method for rigid shapes
Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of Shapes. Comput. Graph. Forum 27, 1341–1348 (2008). Spectral method for non-rigid symmetry detection
Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. In: Proceedings of Symposium on Geometry Processing (SGP), Copenhagen, pp. 1341–1348 (2008)
Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22, 281–289 (2003)
Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.J.: Discovering structural regularity in 3D geometry. ACM Trans. Graph. (TOG) 27(3), 43 (2008)
Peyre, G., Cohen, L.: Surface segmentation using geodesic centroidal Tesselation. In: Proceedings of International Symposium on 3D Data Processing Visualization Transmission, Thessaloniki, pp. 995–1002 (2004)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993). Cotangent weights discretization of the Laplace-Beltrami operator
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In: Proceedings of Workshop on Non-rigid Registration and Tracking Through Learning (NRTL) (2007)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. (IJCV) 89(1), 18–39 (2010)
Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33, 381–390 (2009). FEM approximation of the Laplace-Beltrami operator
Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “shape-DNA” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006). Shape recognition using Laplace-Beltrami spectrum
Rosman, G., Bronstein, A.M., Bronstein, M.M., Sidi, A., Kimmel, R.: Fast multidimensional scaling using vector extrapolation. Technical report CIS-2008-01, Department of Computer Science, Technion, Israel (2008). Introduction of vector extrapolation methods for MDS problems
Rubner, Y., Guibas, L.J., Tomasi, C.: The earth movers distance, multi-dimensional scaling, and color-based image retrieval. In: Proceedings of the ARPA Image Understanding Workshop, New Orleans, pp. 661–668 (1997)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of Symposium on Geometry Processing (SGP), Barcelona, pp. 225–233 (2007). Introduction of GPS embedding
Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.: Multichart geometry images. In: Proceedings of Symposium on Geometry Processing (SGP), Aachen, pp. 146–155 (2003)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. (PNAS) 93(4), 1591–1595 (1996)
Shilane, P., Funkhauser, T.: Selecting distinctive 3D shape descriptors for similarity retrieval. In: Proceedings of Shape Modelling and Applications, Matsushima (2006)
Shirdhonkar, S., Jacobs, D.W.: Approximate earth movers distance in linear time. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage (2008)
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Nice (2003)
Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric manifolds. Interfaces Free Bound. 6(4), 315–327 (2004)
Starck, J., Hilton, A.: Correspondence labelling for widetimeframe free-form surface matching. In: Proceedings of International Conference on Computer Vision (ICCV), Rio de Janeiro (2007)
Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of Symposium on Geometry Processing (SGP), Berlin (2009)
Thorstensen, N., Keriven, R.: Non-rigid shape matching using geometry and photometry. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Miami (2009)
Thrun, S., Wegbreit, B.: Shape from symmetry. In: Proceedings of International Conference on Computer Vision (ICCV), Beijing (2005)
Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proceedings of 3DOR, Munich (2009)
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Proceedings of European Conference on Computer Vision (ECCV), Marseille, pp. 596–609 (2008)
Tsai, Y.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. (SINUM) 41(2), 673–694 (2003)
Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)
Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13(3), 743–768 (1963). Tutte Laplacian operator
Walter, J., Ritter, H.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD), Edmonton, pp. 123–131 (2002). MDS with hyperbolic geometry
Wang, C., Bronstein, M.M., Paragios, N.: Discrete minimum distortion correspondence problems for non-rigid shape matching, Research report 7333, INRIA (2010)
Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Conference on Computer Graphics and Interactive Techniques (2008). Analysis of different discretizations of the Laplace-Beltrami operator
Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. (TOG) 27(4), 1–16 (2008)
Wolter, J.D., Woo, T.C., Volz, R.A.: Optimal algorithms for symmetry detection in two and three dimensions. Vis. Comput. 1, 37–48 (1985)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Miami (2009)
Zhang, H.: Discrete combinatorial Laplacian operators for digital geometry processing. In: SIAM Conference on Geometric Design, pp. 575–592 (2004). Combinatorial Laplace-Beltrami operator
Zhao, H.K.: Fast sweeping method for eikonal equations. Math. Comput. 74, 603–627 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this entry
Cite this entry
Bronstein, A.M., Bronstein, M.M. (2015). Manifold Intrinsic Similarity. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_57
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0790-8_57
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-0789-2
Online ISBN: 978-1-4939-0790-8
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering