Skip to main content

Duality and Convex Programming

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

This chapter surveys key concepts in convex duality theory and their application to the analysis and numerical solution of problem archetypes in imaging. Convex analysis, Variational analysis, Duality

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15(2), 345–348 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)

    MATH  Google Scholar 

  3. Aubert, G., Kornprost, P.: Mathematical Problems Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)

    MATH  Google Scholar 

  4. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm and Fienup variants: a view from convex feasibility. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)

    MathSciNet  Google Scholar 

  8. Bauschke, H.H., Combettes, P.L., Luke, D.R.: A hybrid projection reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)

    Google Scholar 

  9. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Bauschke, H.H., Cruz, J.Y., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle (2013). Preprint. arXiv:1309.4709v1 [math.OC]

    Google Scholar 

  11. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013)

    MATH  MathSciNet  Google Scholar 

  12. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)

    MATH  MathSciNet  Google Scholar 

  13. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found Comput. Math. 14(1), 63–83 (2014)

    MATH  MathSciNet  Google Scholar 

  14. Bauscke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. (in press). doi:10.1007/510013-013-0049-8

    Google Scholar 

  15. Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Beck, A., Teboulle, M.: A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, pp. 33–48. Springer, New York (2011)

    Google Scholar 

  17. Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A 1-unified variational framework for image restoration. In: Pajdla, T., Matas, J. (eds.) Proceedings of the Eighth European Conference on Computer Vision, Prague, 2004. Lecture Notes in Computer Science, vol. 3024, pp. 1–13. Springer, New York (2004)

    Google Scholar 

  18. Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimensional l p spectral estimation problems. SIAM J. Contr. Optim. 26, 985–996 (1988)

    MATH  MathSciNet  Google Scholar 

  19. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harm. Anal. 27, 265–274 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Blumensath, T., Davies, M.E.: Normalised iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sign. Process. 4, 298–309 (2010)

    Google Scholar 

  21. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  22. Borwein, J.M.: On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems. Math. Program 61, 251–261 (1993)

    MATH  Google Scholar 

  23. Borwein, J.M., Hamilton, C.: Symbolic fenchel conjugation. Math. Program 116, 17–35 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Borwein, J.M., Jon Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedias in Mathematics, vol. 109. Cambridge University Press, New York (2009)

    Google Scholar 

  25. Borwein, J.M., Lewis, A.S.: Duality relationships for entropy-like minimization problems. SIAM J. Contr. Optim. 29, 325–338 (1990)

    MathSciNet  Google Scholar 

  26. Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optim. 1, 191–205 (1991)

    MATH  MathSciNet  Google Scholar 

  27. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)

    Google Scholar 

  28. Borwein, J.M., Luke, D.R.: Entropic regularization of the 0 function. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 65–92. Springer, Berlin (2011)

    Google Scholar 

  29. Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 93–109. Springer, Berlin (2011)

    Google Scholar 

  30. Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0381-x

    Google Scholar 

  31. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  32. Borwein, J.M., Zhu, Q.J.: Variational methods in the presence of symmetry. Adv. Nonlinear Anal. 2(3), 271–307 (2013)

    MATH  MathSciNet  Google Scholar 

  33. Borwein, J.M., Lewis, A.S., Limber, M.N., Noll, D.: Maximum entropy spectral analysis using first order information. Part 2: a numerical algorithm for fisher information duality. Numer. Math. 69, 243–256 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Borwein, J.M., Lewis, A.S., Noll, D.: Maximum entropy spectral analysis using first order information. Part 1: fisher information and convex duality. Math. Oper. Res. 21, 442–468 (1996)

    MATH  MathSciNet  Google Scholar 

  35. Boyd, S., Vandenberghe, L.: Convex Optimization. Oxford University Press, New York (2003)

    Google Scholar 

  36. Brezhneva, O.A., Tret’yakov, A.A., Wright, S.E.: A simple and elementary proof of the Karush–Kuhn–Tucker theorem for inequality-constrained optimization. Optim. Lett. 3, 7–10 (2009)

    MATH  MathSciNet  Google Scholar 

  37. Burg, J.P.: Maximum entropy spectral analysis. Paper presented at the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City (1967)

    Google Scholar 

  38. Burke, J.V., Luke, D.R.: Variational analysis applied to the problem of optical phase retrieval. SIAM J. Contr. Optim. 42(2), 576–595 (2003)

    MATH  MathSciNet  Google Scholar 

  39. Byrne, C.L.: Signal Processing: A Mathematical Approach. AK Peters, Natick (2005)

    Google Scholar 

  40. Candés, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    MATH  MathSciNet  Google Scholar 

  41. Candés, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    MATH  MathSciNet  Google Scholar 

  42. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory Algorithms and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  43. Chambolle, A.: An algorithm for total variation minimization and applications. J Math. Imaging Vis. 20, 89–97 (2004)

    MathSciNet  Google Scholar 

  44. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    MATH  MathSciNet  Google Scholar 

  45. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MATH  MathSciNet  Google Scholar 

  46. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal–dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    MATH  MathSciNet  Google Scholar 

  47. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)

    MATH  MathSciNet  Google Scholar 

  48. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Convex and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, New York (2012)

    Google Scholar 

  49. Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  50. Clarke, F.H., Stern, R.J., Ledyaev, Yu.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  51. Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp 155–270. Academic, New York (1996)

    Google Scholar 

  52. Combettes, P.L., Pesquet, J.-C.: Proximal splitting method in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 185–212. Springer, Berlin (2011)

    Google Scholar 

  53. Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67(3), 487–507 (1990)

    MATH  MathSciNet  Google Scholar 

  54. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. SIAM J. Multiscale Model. Simulat. 4(4), 1168–1200 (2005)

    MATH  MathSciNet  Google Scholar 

  55. Combettes, P.L., D\(\tilde{\mbox{u}}\)ng, D., V\(\tilde{\mbox{u}}\), B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)

    Google Scholar 

  56. Dacunha-Castelle, D., Gamboa, F.: Maximum d’entropie et probléme des moments. l’Institut Henri Poincaré 26, 567–596 (1990)

    MATH  MathSciNet  Google Scholar 

  57. Destuynder, P., Jaoua, M., Sellami, H.: A dual algorithm for denoising and preserving edges in image processing. J. Inverse Ill-Posed Prob. 15, 149–165 (2007)

    MATH  MathSciNet  Google Scholar 

  58. Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)

    MATH  Google Scholar 

  59. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    MATH  MathSciNet  Google Scholar 

  60. Eggermont, P.P.B.: Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24(6), 1557–1576 (1993)

    MATH  MathSciNet  Google Scholar 

  61. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Elsevier, New York (1976)

    MATH  Google Scholar 

  62. Fenchel, W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949)

    MATH  MathSciNet  Google Scholar 

  63. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)

    MATH  MathSciNet  Google Scholar 

  64. Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–428 (1986)

    MATH  MathSciNet  Google Scholar 

  65. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS 371, pp. 96–110. Springer-Verlag, Heidelberg (2008)

    Google Scholar 

  66. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Bostan (1984)

    Google Scholar 

  67. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in Mathematics, vol. 1894. Springer, New York (2007)

    Google Scholar 

  68. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). Preprint. arXiv:1212.3349v2 [math.OC]

    Google Scholar 

  69. Hesse, R., Luke, D.R., Neumann, P.: Projection Methods for Sparse Affine Feasibility: Results and Counterexamples (2013). Preprint. arXiv:1307.2009 [math.OC]

    Google Scholar 

  70. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)

    MATH  MathSciNet  Google Scholar 

  71. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, I and II. Grundlehren der mathematischen Wissenschaften, vols. 305–306. Springer, New York (1993)

    Google Scholar 

  72. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren der mathematischen Wissenschaften. Springer, New York (2001)

    MATH  Google Scholar 

  73. Iusem, A.N., Teboulle, M.: A regularized dual-based iterative method for a class of image reconstruction problems. Inverse Probl. 9, 679–696 (1993)

    MATH  MathSciNet  Google Scholar 

  74. Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and its Applications, vol. 36. Oxford University Press, New York (2008)

    Google Scholar 

  75. Klee, V.: Convexity of Cebysev sets. Math. Ann. 142, 291–304 (1961)

    MathSciNet  Google Scholar 

  76. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)

    Google Scholar 

  77. Levi, L.: Fitting a bandlimited signal to given points. IEEE Trans. Inform. Theory 11, 372–376 (1965)

    Google Scholar 

  78. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)

    MATH  MathSciNet  Google Scholar 

  79. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)

    MATH  MathSciNet  Google Scholar 

  80. Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics, vol. 22. Springer, New York (2006)

    Google Scholar 

  81. Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Alg. 16(2), 171–185 (1997)

    MATH  MathSciNet  Google Scholar 

  82. Lucet, Y.: Fast Moreau envelope computation I: numerical algorithms. Numer. Alg. 43(3), 235–249 (2006)

    MATH  MathSciNet  Google Scholar 

  83. Lucet, Y.: Hybrid symbolic-numeric algorithms for computational convex analysis. Proc. Appl. Math. Mech. 7(1), 1062301–1062302 (2007)

    Google Scholar 

  84. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20(1), 216–250 (2009)

    MATH  MathSciNet  Google Scholar 

  85. Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear quadratic model for computational convex anlysis. Comput. Optim. Appl. 43(1), 95–11 (2009)

    MATH  MathSciNet  Google Scholar 

  86. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  87. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005)

    MATH  MathSciNet  Google Scholar 

  88. Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)

    MATH  MathSciNet  Google Scholar 

  89. Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)

    MATH  MathSciNet  Google Scholar 

  90. Maréchal, P., Lannes, A. (1997) Unification of some deterministic and probabilistic methods for the solution of inverse problems via the principle of maximum entropy on the mean. Inverse Probl. 13, 135–151 (1962)

    Google Scholar 

  91. Mattingley, J., Body, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng. 13, 1–27 (2012)

    MATH  MathSciNet  Google Scholar 

  92. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)

    MATH  MathSciNet  Google Scholar 

  93. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)

    Google Scholar 

  94. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus de l’Académie des Sciences de Paris 255, 2897–2899 (1962)

    MATH  MathSciNet  Google Scholar 

  95. Moreau, J.J.: Proximité et dualité dans un espace Hilbertian. Bull de la Soc math de France 93(3), 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  96. Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  97. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)

    Google Scholar 

  98. Patrinos, P., Sarimveis, H.: Convex parametric piecewise quadratic optimization: theory and algorithms. Automatica 47, 1770–1777 (2011)

    MATH  MathSciNet  Google Scholar 

  99. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, New York (1993)

    Google Scholar 

  100. Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Contr. Opt. 31(4), 1080–1092 (1993)

    MATH  MathSciNet  Google Scholar 

  101. Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Pure and Applied Mathematics, vol. 4. Marcel Dekker, New York (1971). Translated from Russian by Karol Makowski. Translation edited by Lucien W. Neustadt

    Google Scholar 

  102. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)

    MATH  MathSciNet  Google Scholar 

  103. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  104. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    MATH  MathSciNet  Google Scholar 

  105. Rockafellar, R.T.: Integrals which are convex functionals, II. Pacific J. Math. 39, 439–469 (1971)

    MATH  MathSciNet  Google Scholar 

  106. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

    MATH  Google Scholar 

  107. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)

    MATH  Google Scholar 

  108. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    MATH  Google Scholar 

  109. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)

    MATH  Google Scholar 

  110. Simons, S.: From Hahn–Banach to Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, New York (2008)

    MATH  Google Scholar 

  111. Singer, I.: Duality for Nonconvex Approximation and Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  112. Teboulle, M., Vajda, I.: Convergence of best φ-entropy estimates. IEEE Trans. Inform. Process. 39, 279–301 (1993)

    MathSciNet  Google Scholar 

  113. Tihonov, A.N.: On the regularization of ill-posed problems (Russian). Dokl. Akad. Nauk. SSSR 153, 49–52 (1963)

    MathSciNet  Google Scholar 

  114. Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)

    MATH  MathSciNet  Google Scholar 

  115. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)

    MATH  MathSciNet  Google Scholar 

  116. Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)

    MATH  MathSciNet  Google Scholar 

  117. Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  118. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    MATH  Google Scholar 

  119. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp 237–424. Academic, New York (1971)

    Google Scholar 

Download references

Acknowledgements

D. Russell Luke’s work was supported in part by NSF grants DMS-0712796 and DMS-0852454. Work on the second edition was supported by DFG grant SFB755TPC2. The authors wish to thank Matthew Tam for his assistance in preparing a revision for the second edition of the handbook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Borwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Borwein, J.M., Luke, D.R. (2015). Duality and Convex Programming. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_7

Download citation

Publish with us

Policies and ethics