Abstract
The need to improve how efficiently data centre operate is increasing due to the continued high demand for new data centre capacity combined with other factors such as the increased competition for energy resources. The financial crisis may have dampened data centre demand temporarily, but current projections indicate strong growth ahead. By 2020, it is estimated that annual investment in the construction of new data centres will rise to $ 50bn in the US, and $ 220bn worldwide [23].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Parallel Workload Archive. (2006). URL http://www.cs.huji.ac.il/labs/parallel/workload/ .
Green grid data center power efficiency metrics: PUE and DCIE. Tech. rep., The Green Grid (2008).
Productivity indicator. Tech. rep., The Green Grid (2008).
Carbon usage effectiveness (cue): A green grid data center sustainability metric. Tech. rep., The Green Grid (2010).
ERE: A metric for measuring the benefit of reuse energy from a data center. White paper, The Green Grid (2010).
Enhancing the energy efficiency and use of green energy in data centers. Tech. rep., Green IT Promotion Council (2011).
Harmonizing global metrics for data center energy efficiency. Global taskforce reaches agreement on measurement protocols for PUE continues discussion of additional energy efficiency metrics. Tech. rep., Global Metrics Harmonization Task Force (2011).
New data center energy efficiency evaluation index. dppe (datacenter performance per energy). measurement guidelines (ver 2.05). Tech. rep., Green IT Promotion Council (2011).
On-site energy generation efficiency (oge) and energy carbon intensity (eci). Tech. rep., Green IT Promotion Council (2011).
Recommendations for measuring and reporting overall data center efficiency. version 2 – measuring PUE for data centers. Tech. rep., Data Center Efficiency Task Force (2011).
Water usage effectiveness. Tech. rep., The Green Grid (2011).
Global taskforce reaches agreement on measurement protocols for GEC, ERF, and CUE – continues discussion of additional energy efficiency metrics. Tech. rep., Global Metrics Harmonization Task Force (2012).
PUE (tm): A comprehensive examination of the metric. confidential report. White paper, The Green Grid (2012).
Aumueller, M., Schulze-Doebold, J., Lang, R., Rainer, D., Werner, A., Woessner, U., Wol, P.: COVISE User’s Guide (2013).
vor dem Berge, M.: First definition of the flexible rack-level compute box with integrated cooling. Tech report, CoolEmAll (2012).
vor dem Berge, M., Christmann, W., Volk, E., Wesner, S., Oleksiak, A., Piontek, T., Costa, G.D., Pierson, J.M.: CoolEmAll - Models and tools for optimization of data center energy-efficiency. In: Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–5 (2012).
vor dem Berge, M., Da Costa, G., Jarus, M., Oleksiak, A., Piatek, W., Volk, E.: Modeling Data Center Building Blocks for Energy-efficiency and Thermal Solutions. Springer (2013).
Bąk, S., Krystek, M., Kurowski, K., Oleksiak, A., Pik atek, W., Wk aglarz, J.: GSSIM – A tool for distributed computing experiments. Scientific Programming 19(4), 231–251 (2011). DOI 10.3233/SPR-2011-0332.
Bolla, R.: STF439 - global KPIs for energy efficiency of deployed broadband. In: ETSI Workshop on Energy Efficiency (2012).
Bosque, A., Ibañez, P., Viñals, V., Stenström, P., Llaber\'ıa, J.M.: Characterization of Apache web server with Specweb2005. In: Proceedings of the 2007 workshop on MEmory performance: DEaling with Applications, systems and architecture, MEDEA '07, pp. 65–72. ACM, New York, NY, USA (2007). DOI 10.1145/1327171.1327179. URL http://doi.acm.org/10.1145/1327171.1327179 .
CA: Web-page of the ca company (2014). URL www.ca.com .
Chetsa, G.L.T., Lefevre, L., Pierson, J.M., Stolf, P., Da Costa, G.: DNA-inspired scheme for building the energy profile of HPC systems. In: International Workshop on Energy-Efficient Data Centres, Springer (2012).
Christian, L., Belady, P.: Projecting annual new data center construction market size. Tech. rep., Microsoft Global Foundation Services (2011).
Cupertino, L.F., Costa, G., Sayah, A., Pierson, J.M.: Energy consumption library. In: J.M. Pierson, G. Da Costa, L. Dittmann (eds.) Energy Efficiency in Large Scale Distributed Systems, Lecture Notes in Computer Science, pp. 51–57. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-40517-4_4. URL http://dx.doi.org/10.1007/978-3-642-40517-4_4 .
Dongarra, J.J., Meuer, H.W., Strohmaier, E., et al.: Top500 supercomputer sites. Supercomputer 67, 89–111 (1997).
Donoghue, A.: Market assessment report. Tech report, CoolEmAll (2012).
Donoghue, A.: Preliminary exploitation plan. Tech report, CoolEmAll (2012).
Eddy, S.R., Wheeler, T.J.: Hmmer user’s guide: Biological sequence analysis using profile hidden markov models (2013). URL http://www.hmmer.org/ .
Electric, S.: Web-page of the data center genome project (2014). URL http://datacentergenome.com .
Facebook: Web-page of the open compute project (2014). URL http://www.opencompute.org .
Facilities, F.: Dc6sigma products of future facilities (2014). URL http://www.futurefacilities.com/ .
Facilities, F.: Web-site of future facilities company (2014). URL http://www.futurefacilities.com/ .
Georges, D.C., Helmut, H., Karin, H., Jean-Marc, P.: Modeling the Energy Consumption of Distributed Applications. CRC Press (2012).
Herrlin, M.: Rack cooling effectiveness in data centers and telecom central offices: The rack cooling index (RCI). In: ASHRAE Transactions [0001-2505], pp. 725–731 (2005).
Hoyer, M., vor dem Berge, M., Volk, E., Gallizo, G., Buchholz, J., Fornós, R., L. Sisó, W.P.: First definition of the modular compute box with integrated cooling. Tech report, CoolEmAll (2012).
Innovative Research, I.: Tileflow product of innovative research inc. (2014). URL http://inres.com/products/tileflow/overview.html .
Iosup, A., Li, H., Dumitrescu, C., Wolters, L., Epema, D.: The Grid Workload Format (2006).
Jiang, T., Kipp, A., Cappiello, C., Fugini, M., Gangadharan, G., Ferreira, A.M., Pernici, B., Plebani, P., Salomie, I., Cioara, T., Anghel, I., Christmann, W., Henis, E., Kat, R., Lazzaro, M., Ciuca, A., Hatiegan, D.: Layered green performance indicators definitions. Project deliverable, GAMES project (2010).
Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Future Gener. Comput. Syst. 28(2), 478–489 (2012). DOI 10.1016/j.future.2011.05.005. URL http://dx.doi.org/10.1016/j.future.2011.05.005 .
Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W.: Energy-aware simulations with GSSIM. In: Energy Efficiency in Large Scale Distributed Systems (EE-LSDS), pp. 55–58 (2010).
Kundra, V.: Federal data center consolidation initiative. Memorandum for chief information officers, Office of Management and Budget of the USA, Washington, DC (2010).
Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A., Weglarz, J.: DCWoRMS - a tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory (2013). DOI 10.1016/j.simpat.2013.08.007. URL http://dx.doi.org/10.1016/j.simpat.2013.08.007 .
Malone, C., Belady, C.: Metrics to characterize data center & IT equipment energy use. In: Proceedings of the Digital Power Forum (2006).
Mammela, O., Majanen, M., Basmadjian, R., Meer, H.D., Giesler, A., Homberg, W.: Energy-aware job scheduler for high-performance computing. Computer Science - Research and Development 27(4), 265–275 (2012).
Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K.S.: Model-driven coordinated management of data centers. Comput. Networks (2010).
Newcombe, L., Limbuwala, Z., Latham, P., Smith, V.: Data center fixed to variable energy ratio metric dc-fver. Tech. rep., BCS The Chartered Institute for IT (2012).
Prieto, J.L., Costa, G.D.: Energy and heat-aware classification of application. Tech report, CoolEmAll (2013).
Prieto, J.L., Gallizo, G., Oleksiak, A.: Validation scenarios, methodology and metrics. Tech report, CoolEmAll (2012).
Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power” struggles: coordinated multi-level power management for the data center. In: Proceedings of the 13th international conference on Architectural support for programming languages and operating systems, ASPLOS XIII, pp. 48–59. ACM, New York, NY, USA (2008). DOI 10.1145/1346281.1346289. URL http://doi.acm.org/10.1145/1346281.1346289 .
Rathgeb, D., Volk, E.: First release of the simulation and visualisation toolkit. Tech report, CoolEmAll (2013).
Robert, B., Ali, N., Florian, N., de Meer, H., Giuliani, G.: A methodology to predict the power consumption of servers in data centers. Proceedings of the 2nd international conference on energy-efficient computing and networking (2011).
Romonet: Romonet products overview (2014). URL http://www.romonet.com/overview .
Shah, A., Krishnan, N.: Optimization of global data center thermal management workload for minimal environmental and economic burden. Components and Packaging Technologies, IEEE Transactions on 31(1), 39–45 (2008). DOI 10.1109/TCAPT.2007.906721.
Slurm: Slurm workload manager (2013).
Stanley, J.R., Brill, K.G., Koomey, J.: Four metrics define data center “greenness”. Tech. rep., Uptime Institute (2007).
Stansberry, M.: Data center industry survey results 2011. Tech. rep., Uptime Institute (2011).
Torque: Torque resource manager (2013).
Tsiombikas, J.: C-Ray simple raytracing tests (2008).
Volk, E., Piątek, W., Jarus, M., Costa, G.D., Sisó, L., vor dem Berge, M.: First definition of the hardware and software models. Tech report, CoolEmAll (2012).
Volk, E., Rathgeb, D., Oleksiak, A.: Coolemall – optimising cooling efficiency in data centres. Computer Science - Research and Development (2013). DOI 10.1007/s00450-013-0246-4.
Witkowski, M., Oleksiak, A., Piontek, T., Weglarz, J.: Practical power consumption estimation for real life hpc applications. Future Generation Computer Systems (2012).
Woessner, U., Volk, E., Gallizo, G.: Design of the CoolEmAll simulation and visualisation environment. Tech report, CoolEmAll (2012).
Yeo, S., Lee, H.H.: SimWare: A Holistic Warehouse-Scale Computer Simulator. Computer 45(9), 48–55 (2012). DOI 10.1109/MC.2012.251.
Acknowledgment
The results presented in this chapter were funded by the European Commission under contract 288701 through the project CoolEmAll.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
vor dem Berge, M. et al. (2015). CoolEmAll: Models and Tools for Planning and Operating Energy Efficient Data Centres. In: Khan, S., Zomaya, A. (eds) Handbook on Data Centers. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2092-1_6
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2092-1_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2091-4
Online ISBN: 978-1-4939-2092-1
eBook Packages: Computer ScienceComputer Science (R0)