Skip to main content

Decremental All-Pairs Shortest Paths

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms

Years and Authors of Summarized Original Work

  • 2004; Demetrescu, Italiano

Problem Definition

A dynamic graph algorithm maintains a given property \( \mathcal{P} \) on a graph subject to dynamic changes, such as edge insertions, edge deletions and edge weight updates. A dynamic graph algorithm should process queries on property \( \mathcal{P} \) quickly, and perform update operations faster than recomputing from scratch, as carried out by the fastest static algorithm. An algorithm is fully dynamic if it can handle both edge insertions and edge deletions. A partially dynamic algorithm can handle either edge insertions or edge deletions, but not both: it is incremental if it supports insertions only, and decremental if it supports deletions only.

This entry addressed the decremental version of the all-pairs shortest paths problem (APSP), which consists of maintaining a directed graph with real-valued edge weights under an intermixed sequence of the following operations:

delete(u, v)::
...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory, algorithms and applications. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Demetrescu C, Italiano G (2004) A new approach to dynamic all pairs shortest paths. J Assoc Comput Mach 51:968–992

    Article  MathSciNet  MATH  Google Scholar 

  3. Dijkstra E (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  4. Even S, Gazit H (1985) Updating distances in dynamic graphs. Methods Oper Res 49:371–387

    MathSciNet  MATH  Google Scholar 

  5. Fredman M, Tarjan R (1987) Fibonacci heaps and their use in improved network optimization algorithms. J ACM 34:596–615

    Article  MathSciNet  Google Scholar 

  6. Fredman ML (1976) New bounds on the complexity of the shortest path problems. SIAM J Comput 5(1):87–89

    Article  MathSciNet  MATH  Google Scholar 

  7. Frigioni D, Marchetti-Spaccamela A, Nanni U (1998) Semi-dynamic algorithms for maintaining single source shortest paths trees. Algorithmica 22:250–274

    Article  MathSciNet  MATH  Google Scholar 

  8. Frigioni D, Marchetti-Spaccamela A, Nanni U (2000) Fully dynamic algorithms for maintaining shortest paths trees. J Algorithm 34:351–381

    Article  MathSciNet  MATH  Google Scholar 

  9. King V (1999) Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: Proceedings of 40th IEEE symposium on foundations of computer science (FOCS’99). IEEE Computer Society, New York, pp 81–99

    Google Scholar 

  10. Knuth D, Plass M (1981) Breaking paragraphs into lines. Softw-Pract Exp 11:1119–1184

    Article  MATH  Google Scholar 

  11. Loubal P (1967) A network evaluation procedure. Highw Res Rec 205:96–109

    Google Scholar 

  12. Murchland J (1967) The effect of increasing or decreasing the length of a single arc on all shortest distances in a graph. Technical report, LBS-TNT-26, London Business School. Transport Network Theory Unit, London

    Google Scholar 

  13. Pettie S (2003) A new approach to all-pairs shortest paths on realweighted graphs. Theor Comput Sci 312:47–74, Special issue of selected papers from ICALP (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramalingam G (1996) Bounded incremental computation. Lect Note Comput Sci 1089

    Google Scholar 

  15. Ramalingam G, Reps T (1996) An incremental algorithm for a generalization of the shortest path problem. J Algorithm 21:267–305

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramalingam G, Reps T (1996) On the computational complexity of dynamic graph problems. Theor Comput Sci 158:233–277

    Article  MathSciNet  MATH  Google Scholar 

  17. Rodionov V (1968) The parametric problem of shortest distances. USSR Comput Math Math Phys 8:336–343

    Article  MathSciNet  MATH  Google Scholar 

  18. Schulz F, Wagner D, Weihe K (1999) Dijkstra’s algorithm on-line: an empirical case study frompublic railroad transport. In: Proceedings of 3rd workshop on algorithm engineering (WAE’99), London. Notes in computer science, vol 1668, pp 110–123

    Google Scholar 

  19. Takaoka T (1992) A new upper bound on the complexity of the all pairs shortest path problem. Inf Proc Lett 43:195--199

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Demetrescu, C., Italiano, G.F. (2016). Decremental All-Pairs Shortest Paths. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_102

Download citation

Publish with us

Policies and ethics