Skip to main content

Minimum Spanning Trees

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 156 Accesses

Years and Authors of Summarized Original Work

  • 2002; Pettie, Ramachandran

Problem Definition

The minimum spanning tree (MST) problem is, given a connected, weighted, and undirected graph G = (V, E, w), to find the tree with minimum total weight spanning all the vertices V . Here, \(w : E \rightarrow \mathbb{R}\) is the weight function. The problem is frequently defined in geometric terms, where V is a set of points in d-dimensional space and w corresponds to Euclidean distance. The main distinction between these two settings is the form of the input. In the graph setting, the input has size O(m + n) and consists of an enumeration of the \(n =\vert V \vert\) vertices and \(m =\vert E\vert\) edges and edge weights. In the geometric setting, the input consists of an enumeration of the coordinates of each point (O(dn) space): all \(\left (\begin{array}{*{20}c} V \\ 2\\ \end{array} \right )\) edges are implicitly present and their weights implicit in the point coordinates. See [16] for a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Borůvka O (1926) O jistém problému minimálním. Práce Moravské Přírodovědecké Společnosti 3:37–58. In Czech

    Google Scholar 

  2. Chazelle B (2000) A minimum spanning tree algorithm with inverse-Ackermann type complexity. J ACM 47(6):1028–1047

    Article  MathSciNet  MATH  Google Scholar 

  3. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT, Cambridge

    MATH  Google Scholar 

  4. Eppstein D, Geometry in action: minimum spanning trees. http://www.ics.uci.edu/~eppstein/gina/mst.html. Last downloaded Nov 2014

  5. Gabow HN, Galil Z, Spencer TH, Tarjan RE (1986) Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6:109–122

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey MR, Johnson DS (1979) Computers and intractability: a guide to NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  7. Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7(1):43–57

    Article  MathSciNet  MATH  Google Scholar 

  8. Ion A, Kropatsch WG, Haxhimusa Y (2006) Considerations regarding the minimum spanning tree pyramid segmentation method. In: Proceedings of the 11th workshop structural, syntactic, and statistical pattern recognition (SSPR), Hong Kong. LNCS, vol 4109. Springer, Berlin, pp 182–190

    Google Scholar 

  9. Karger DR, Klein PN, Tarjan RE (1995) A randomized linear-time algorithm for finding minimum spanning trees. J ACM 42:321–329

    Article  MathSciNet  MATH  Google Scholar 

  10. Katriel I, Sanders P, Träff JL (2003) A practical minimum spanning tree algorithm using the cycle property. In: Proceedings of the 11th annual European symposium on algorithms, Budapest. LNCS, vol 2832. Springer, Berlin, pp 679–690

    Google Scholar 

  11. Moret BME, Shapiro HD (1994) An empirical assessment of algorithms for constructing a minimum spanning tree. In: Computational support for discrete mathematics. DIMACS series in discrete mathematics and theoretical computer science, vol 15. American Mathematical Society, Providence

    Google Scholar 

  12. Pettie S (2003) On the shortest path and minimum spanning tree problems. Ph.D. thesis, The University of Texas, Austin

    Google Scholar 

  13. Pettie S (2005) Towards a final analysis of pairing heaps. In: Proceedings of the 46th annual symposium on foundations of computer science (FOCS), Pittsburgh, pp 174–183

    Google Scholar 

  14. Pettie S, Ramachandran V (2002) An optimal minimum spanning tree algorithm. J ACM 49(1):16–34

    Article  MathSciNet  MATH  Google Scholar 

  15. Pettie S, Ramachandran V (2005) A shortest path algorithm for real-weighted undirected graphs. SIAM J Comput 34(6):1398–1431

    Article  MathSciNet  MATH  Google Scholar 

  16. Preparata FP, Shamos MI (1985) Computational geometry. Springer, New York

    Book  MATH  Google Scholar 

  17. Subramaniam S, Pope SB (1998) A mixing model for turbulent reactive flows based on euclidean minimum spanning trees. Combust Flame 115(4):487–514

    Article  Google Scholar 

  18. Tarjan RE (1983) Data structures and network algorithms. CBMS-NSF regional conference series in applied mathematics, vol 44. SIAM, Philadelphia

    Google Scholar 

  19. Thorup M (1999) Undirected single-source shortest paths with positive integer weights in linear time. J ACM 46(3):362–394

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Pettie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Pettie, S. (2016). Minimum Spanning Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_239

Download citation

Publish with us

Policies and ethics