Skip to main content

Perfect Phylogeny Haplotyping

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 190 Accesses

Years and Authors of Summarized Original Work

  • 2005; Ding, Filkov, Gusfield

Problem Definition

In the context of the perfect phylogeny haplotyping (PPH) problem, each vector \( { h\in \{0,1\}^m } \) is called a haplotype, while each vector \( { g\in \{0,1,2\}^m } \) is called a genotype. Haplotypes are binary encodings of DNA sequences, while genotypes are ternary encodings of pairs of DNA sequences (one sequence for each of the two homologous copies of a certain chromosome).

Two haplotypes \( { h^{\prime} } \) and \( { h^{\prime\prime} } \) are said to resolve a genotype g if, at each position j: (i) if \( { g_j\in \{0,1\} } \) then both \( { h^{\prime}_j = g_j } \) and \( { h^{\prime\prime}_{j}=g_j } \); (ii) if \( { g_j=2 } \) then either \( { h^{\prime}_j = 0 } \) and \( { h^{\prime\prime}_{j}=1 } \) or \( { h^{\prime}_j = 1 } \) and \( { h^{\prime\prime}_{j}=0 } \). If \( { h^{\prime} } \) and \( { h^{\prime\prime} } \) resolve g, we write \( { g = h^{\prime} + h^{\prime\prime} } \)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Bafna V, Gusfield D, Lancia G, Yooseph S (2003) Haplotyping as perfect phylogeny: a direct approach. J Comput Biol 10(3–4):323–340

    Article  Google Scholar 

  2. Bixby RE, Wagner DK (1988) An almost linear-time algorithm for graph realization. Math Oper Res 13:99–123

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonizzoni P, Della Vedova G, Dondi R, Li J (2004) The haplotyping problem: an overview of computational models and solutions. J Comput Sci Technol 19(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung RH, Gusfield D (2003) Empirical exploration of perfect phylogeny haplotyping and haplotypes. In: Proceedings of annual international conference on computing and combinatorics (COCOON). Lecture notes in computer science, vol 2697. Springer, Berlin, pp 5–9

    Google Scholar 

  5. Ding Z, Filkov V, Gusfield D (2005) A linear-time algorithm for the perfect phylogeny haplotyping problem. In: Proceedings of the annual international conference on computational molecular biology (RECOMB), New York. ACM, New York

    Google Scholar 

  6. Eskin E, Halperin E, Karp R (2003) Efficient reconstruction of haplotype structure via perfect phylogeny. J Bioinf Comput Biol 1(1):1–20

    Article  Google Scholar 

  7. Gusfield D (2002) Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Myers G, Hannenhalli S, Istrail S, Pevzner P, Waterman M (eds) Proceedings of the annual international conference on computational molecular biology (RECOMB). ACM, New York, pp 166–175

    Google Scholar 

  8. Gusfield D, Orzack SH (2005) Haplotype inference. In: Aluru S (ed) Handbook of computational molecular biology. Champman and Hall/CRC, Boca Raton, pp 1–28

    Google Scholar 

  9. Helmuth L (2001) Genome research: map of the human genome 3.0. Science 293(5530):583–585

    Article  Google Scholar 

  10. Halldorsson BV, Bafna V, Edwards N, Lippert R, Yooseph S, Istrail S (2004) A survey of computational methods for determining haplotypes. In: Computational methods for SNP and haplotype inference: DIMACS/RECOMB satellite workshop. Lecture notes in computer science, vol 2983. Springer, Berlin, pp 26–47

    Google Scholar 

  11. Hudson R (1990) Gene genealogies and the coalescent process. Oxf Surv Evol Biol 7:1–44

    Google Scholar 

  12. Hudson R (2002) Generating samples under the wright-fisher neutral model of genetic variation. Bioinformatics 18(2):337–338

    Article  Google Scholar 

  13. Lancia G (2008) The phasing of heterozygous traits: algorithms and complexity. Comput Math Appl 55(5):960–969

    Article  MathSciNet  MATH  Google Scholar 

  14. Wiuf C (2004) Inference on recombination and block structure using unphased data. Genetics 166(1):537–545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Lancia, G. (2016). Perfect Phylogeny Haplotyping. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_289

Download citation

Publish with us

Policies and ethics