Skip to main content

Phylogenetic Tree Construction from a Distance Matrix

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 87 Accesses

Years and Authors of Summarized Original Work

  • 1968; Boesch

  • 1989; Hein

  • 1989; Culberson, Rudnicki

  • 2003; King, Zhang, Zhou

Problem Definition

Let n be a positive integer. A distance matrix of order n is a matrix D of size (n × n) which satisfies (1) Di, j > 0 for all \(i,j \in \{ 1,2,\ldots ,n\}\) with i ≠ j; (2) Di, j = 0 for all \(i,j \in \{ 1,2,\ldots ,n\}\) with \( i \neq j; \) and (3) Di, j = Dj, i for all \(i,j \in \{ 1,2,\ldots ,n\}\). In the literature, a distance matrix of order n is also called a dissimilarity matrix of order n.

Below, all trees are assumed to be unrooted and edge-weighted. For any tree \(\mathcal{T}\), the distance between two nodes u and v in \(\mathcal{T}\) is defined as the sum of the weights of all edges on the unique path in \(\mathcal{T}\) between u and v and is denoted by \(d_{u,v}^{\mathcal{T}}\). A tree \(\mathcal{T}\) is said to realize a given distance matrix D of order n if and only if it holds that \(\{1,2,\ldots ,n\}\) is a subset of the nodes of \(\mathcal{T}\)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Abdi H (1990) Additive-tree representations. In: Dress A, von Haeseler A (eds) Trees and hierarchical structures: proceedings of a conference held at Bielefeld, FRG, Oct 5–9th, 1987. Lecture Notes in Biomathematics, vol 84. Springer, Berlin/Heidelberg, pp 43–59

    Chapter  Google Scholar 

  2. Batagelj V, Pisanski T, Simões-Pereira JMS (1990) An algorithm for tree-realizability of distance matrices. Int J Comput Math 34(3–4):171–176

    Article  MATH  Google Scholar 

  3. Bennett CH, Li M, Ma B (2003) Chain letters and evolutionary histories. Sci Am 288(6):76–81

    Article  Google Scholar 

  4. Boesch FT (1968) Properties of the distance matrix of a tree. Quart Appl Math 26:607–609

    MathSciNet  MATH  Google Scholar 

  5. Culberson JC, Rudnicki P (1989) A fast algorithm for constructing trees from distance matrices. Inf Process Lett 30(4):215–220

    Article  MathSciNet  MATH  Google Scholar 

  6. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  7. Gusfield DM (1997) Algorithms on strings, trees, and sequences. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  8. Hakimi SL, Yau SS (1964) Distance matrix of a graph and its realizability. Quart Appl Math 22:305–317

    MathSciNet  MATH  Google Scholar 

  9. Hein J (1989) An optimal algorithm to reconstruct trees from additive distance data. Bull Math Biol 51(5):597–603

    Article  MATH  Google Scholar 

  10. King V, Zhang L, Zhou Y (2003) On the complexity of distance-based evolutionary tree construction. In: Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms (SODA 2003), Baltimore, pp 444–453

    Google Scholar 

  11. Nakhleh L, Warnow T, Ringe D, Evans SN (2005) A comparison of phylogenetic reconstruction methods on an Indo-European dataset. Trans Philol Soc 103(2):171–192

    Article  Google Scholar 

  12. Reyzin L, Srivastava N (2007) On the longest path algorithm for reconstructing trees from distance matrices. Inf Process Lett 101(3):98–100

    Article  MathSciNet  MATH  Google Scholar 

  13. The Canterbury Tales Project. University of Birmingham, Brigham Young University, University of Münster, New York University, Virginia Tech, and Keio University. Website: http://www.petermwrobinson.me.uk/canterburytalesproject.com/

  14. Waterman MS, Smith TF, Singh M, Beyer WA (1977) Additive evolutionary trees. J Theor Biol 64(2):199–213

    Article  MathSciNet  Google Scholar 

  15. Wu BY, Chao K-M, Tang CY (1999) Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices. J Combin Optim 3(2–3):199–211

    Article  MathSciNet  MATH  Google Scholar 

  16. Saitou N, Nei M (1987) The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 4(4):406–425

    Google Scholar 

Download references

Acknowledgements

JJ was funded by the Hakubi Project at Kyoto University and KAKENHI grant number 26330014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Jansson, J. (2016). Phylogenetic Tree Construction from a Distance Matrix. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_292

Download citation

Publish with us

Policies and ethics