Skip to main content

Shortest Vector Problem

  • Reference work entry
  • First Online:

Years and Authors of Summarized Original Work

  • 1982; Lenstra, Lenstra, Lovasz

Problem Definition

point lattice is the set of all integer linear combinations

$$ \mathcal{L}({\mathbf b_1, \dots,\mathbf b_n}) = \left\{ \sum_{i=1}^{n} x_i \mathbf b_i \colon x_1, \dots,x_n \in \mathbb{Z} \right\} $$

of n linearly independent vectors \( { \mathbf b_1, \dots,\mathbf b_n \!\in \mathbb{R}^m } \) in m-dimensional Euclidean space. For computational purposes, the lattice vectors \( { \mathbf b_1, \dots,\mathbf b_n } \) are often assumed to have integer (or rational) entries, so that the lattice can be represented by an integer matrix \( { \mathbf B = [\mathbf b_1, \dots,\mathbf b_n] \in \mathbb{Z}^{m\times n} } \) (called basis) having the generating vectors as columns. Using matrix notation, lattice points in \( { \mathcal{L}({\mathbf B}) } \) can be conveniently represented as \( { \mathbf{B} \mathbf x } \) where \( { \mathbf x } \) is an integer vector. The integers m and n are called the dimension...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Ajtai M, Kumar R, Sivakumar D (2001) A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the thirty-third annual ACM symposium on theory of computing – STOC 2001, Heraklion, July 2001. ACM, New York, pp 266–275

    Google Scholar 

  2. Babai L (1986) On Lovasz' lattice reduction and the nearest lattice point problem. Combinatorica 6(1):1–13, Preliminary version in STACS 1985

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassels JWS (1971) An introduction to the geometry of numbers. Springer, New York

    MATH  Google Scholar 

  4. Dinur I, Kindler G, Raz R, Safra S (2003) Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica 23(2):205–243, Preliminary version in FOCS 1998

    Article  MathSciNet  MATH  Google Scholar 

  5. von zur Gathen J, Gerhard J (2003) Modern computer algebra, 2nd edn. Cambridge

    Google Scholar 

  6. Grotschel M, Lovász L, Schrijver A (1993) Geometric algorithms and combinatorial optimization. Algorithms and combinatorics, vol 2, 2nd edn. Springer

    Book  MATH  Google Scholar 

  7. Joux A, Stern J (1998) Lattice reduction: a toolbox for the cryptanalyst. J Cryptol 11(3):161–185

    Article  MathSciNet  MATH  Google Scholar 

  8. Kannan R (1987) Algorithmic geometry of numbers. In: Annual reviews of computer science, vol 2. Annual Review, Palo Alto, pp 231–267

    Google Scholar 

  9. Kannan R (1987) Minkowski's convex body theorem and integer programming. Math Oper Res 12(3):415–440

    Article  MathSciNet  MATH  Google Scholar 

  10. Khot S (2005) Hardness of approximating the shortest vector problem in lattices. J ACM 52(5):789–808, Preliminary version in FOCS 2004

    Article  MathSciNet  MATH  Google Scholar 

  11. Lenstra AK, Lenstra HW Jr, Lovász L (1982) Factoring polynomials with rational coefficients. Math Ann 261:513–534

    Article  MathSciNet  MATH  Google Scholar 

  12. Micciancio D, Goldwasser S (2002) Complexity of lattice problems: a cryptographic perspective, vol 671, The Kluwer international series in engineering and computer science. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  13. Nguyen P, Stern J (2001) The two faces of lattices in cryptology. In: Silverman J (ed) Cryptography and lattices conference – CaLC 2001, Providence, Mar 2001. Lecture notes in computer science, vol 2146. Springer, Berlin, pp 146–180

    Google Scholar 

  14. Schnorr CP (2006) Fast LLL-type lattice reduction. Inf Comput 204(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  15. Vazirani VV (2001) Approximation algorithms. Springer

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Micciancio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Micciancio, D. (2016). Shortest Vector Problem. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_374

Download citation

Publish with us

Policies and ethics