Skip to main content

Squares and Repetitions

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms

Years and Authors of Summarized Original Work

  • 1999; Kolpakov, Kucherov

Figure 1
figure 1935 figure 1935

The structure of RUNS(x) where \( { x =\text{{\tt baababaababbabaababaab}} =} \)\( {\text{{\tt b}}z^2(z^R)^2\text{{\tt b}}} \), for \( { z =\text{{\tt aabab}} } \). The operation \( { \cdot^R } \) is reversing the string

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Apostolico A, Preparata FP (1983) Optimal off-line detection of repetitions in a string. Theor Comput Sci 22(3):297–315

    Article  MathSciNet  MATH  Google Scholar 

  2. Crochemore M (1981) An optimal algorithm for computing the repetitions in a word. Inf Process Lett 12(5):244–250

    Article  MathSciNet  MATH  Google Scholar 

  3. Crochemore M (1986) Transducers and repetitions. Theor Comput Sci 45(1):63–86

    Article  MathSciNet  MATH  Google Scholar 

  4. Crochemore M, Ilie L (2007) Analysis of maximal repetitions in strings. J Comput Sci

    Google Scholar 

  5. Crochemore M, Rytter W (1995) Squares, cubes, and time-space efficient string searching. Algorithmica 13(5):405–425

    Article  MathSciNet  MATH  Google Scholar 

  6. Crochemore M, Rytter W (2003) Jewels of stringology. World Scientific, Singapore

    MATH  Google Scholar 

  7. Franek F, Karaman A, Smyth WF (2000) Repetitions in Sturmian strings. Theor Comput Sci 249(2):289–303

    Article  MathSciNet  MATH  Google Scholar 

  8. Fraenkel AS, Simpson RJ (1998) How many squares can a string contain? J Comb Theory Ser A 82:112–120

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraenkel AS, Simpson RJ (1999) The exact number of squares in fibonacci words. Theor Comput Sci 218(1):95–106

    Article  MathSciNet  MATH  Google Scholar 

  10. Franek F, Simpson RJ, Smyth WF (2003) The maximum number of runs in a string. In: Proceedings of the 14-th Australian workshop on combinatorial algorithms. Curtin University Press, Perth, pp 26– 35

    Google Scholar 

  11. Franek F, Smyth WF, Tang Y (2003) Computing all repeats using suffix arrays. J Autom Lang Comb 8(4):579–591

    MathSciNet  MATH  Google Scholar 

  12. Gusfield D, Stoye J (2004) Linear time algorithms for finding and representing all the tandem repeats in a string. J Comput Syst Sci 69(4):525–546

    Article  MathSciNet  MATH  Google Scholar 

  13. Ilie L (2005) A simple proof that a word of length n has at most 2n distinct squares. J Comb Theory Ser A 112(1):163–164

    Article  MathSciNet  MATH  Google Scholar 

  14. Iliopoulos C, Moore D, Smyth WF (1997) A characterization of the squares in a Fibonacci string. Theor Comput Sci 172:281–291

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolpakov R, Kucherov G (1999) Finding maximal repetitions in a word in linear time. In: Proceedings of the 40th symposium on foundations of computer science. IEEE Computer Society, Los Alamitos, pp 596–604

    Google Scholar 

  16. Lothaire M (ed) (2002) Algebraic combinatorics on words. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Lothaire M (ed) (2005) Applied combinatorics on words. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Main MG (1989) Detecting leftmost maximal periodicities. Discret Appl Math 25:145–153

    Article  MathSciNet  MATH  Google Scholar 

  19. Main MG, Lorentz RJ (1984) An O(n log n) algorithm for finding all repetitions in a string. J Algorithms 5(3):422–432

    Article  MathSciNet  MATH  Google Scholar 

  20. Rytter W (2006) The structure of subword graphs and suffix trees of Fibonacci words. In: Implementation and application of automata, CIAA 2005. Lecture notes in computer science, vol 3845. Springer, Berlin, pp 250–261

    Google Scholar 

  21. Rytter W (2006) The number of runs in a string: improved analysis of the linear upper bound. In: Proceedings of the 23rd annual symposium on theoretical aspects of computer science. Lecture notes in computer science, vol 3884. Springer, Berlin, pp 184–195

    Google Scholar 

  22. Smyth WF (2000) Repetitive perhaps, but certainly not boring. Theor Comput Sci 249(2):343–355

    Article  MathSciNet  MATH  Google Scholar 

  23. Smyth WF (2003) Computing patterns in strings. Addison-Wesley, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Crochemore, M., Rytter, W. (2016). Squares and Repetitions. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_392

Download citation

Publish with us

Policies and ethics