Skip to main content

Efficient Polynomial Time Approximation Scheme for Scheduling Jobs onUniform Processors

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 194 Accesses

Years and Authors of Summarized Original Work

  • 2009; Jansen

  • 2011; Jansen, Robenek

  • 2014; Chen, Jansen, Zhang

Problem Definition

We consider the following fundamental problem in scheduling theory. Suppose that there is a set \(\mathcal{J}\) of n independent jobs J j with processing time p j and a set \(\mathcal{P}\) of m nonidentical processors P i that run at different speeds s i . If job J j is executed on processor P i , then processor P i needs \(p_{j}/s_{i}\) time units to complete the job. The goal is to find an assignment \(a : \mathcal{J} \rightarrow \mathcal{P}\) for the jobs to the processors that minimizes the total length of the schedule \(\max _{i=1,\ldots ,m}\sum _{J_{j}:a(J_{j})=P_{i}}p_{j}/s_{i}\). This is the minimum time needed to complete all jobs on the processors. The problem is denoted Q | | Cmax and it is also called the minimum makespan problem on uniform parallel processors. By simplicity we may assume that the number mof processors is bounded by the number of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Alon N, Azar Y, Woeginger GJ, Yadid T (1998) Approximation schemes for scheduling on parallel machines. J Sched 1:55–66

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen L, Jansen K, Zhang G (2014) On the optimality of approximation schemes for the classical scheduling problem. In: Symposium on discrete algorithms (SODA 2014), Portland

    Google Scholar 

  3. Coffman EG, Garey MR, Johnson DS (1978) An application of bin packing to multiprocessor scheduling. SIAM J Comput 7:1–17

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook W, Gerards AMH, Schrijver A, Tardos E (1986) Sensitivity theorems in integer linear programming. Math Program 34:251–264

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenbrand F, Shmonin G (2006) Caratheodory bounds for integer cones. Oper Res Lett 34:564–568

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernandez de la Vega W, Lueker GS (1981) Bin packing can be solved within 1 +ε in linear time. Combinatorica 1:349–355

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  8. Hochbaum DS (1997) Various notions of approximations: good, better, best, and more. In: Hochbaum DS (ed) Approximation algorithms for NP-hard problems, chap 9. Prentice Hall, Boston, pp 346–398

    Google Scholar 

  9. Hochbaum DS, Shmoys DB (1987) Using dual approximation algorithms for scheduling problems: practical and theoretical results. J ACM 34:144–162

    Article  MathSciNet  Google Scholar 

  10. Hochbaum DS, Shmoys DB (1988) A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J Comput 17:539–551

    Article  MathSciNet  MATH  Google Scholar 

  11. Jansen K (2010) An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of ntegral vasriables. SIAM J Discret Math 24(2):457–485

    Article  MATH  Google Scholar 

  12. Jansen K, Robenek C (2011) Scheduling jobs on identical and uniform processors revisited. In: Workshop on approximation and online algorithms, WAOA 2011. LNCS, vol 7164, pp 109–122 and Technical report, University of Kiel, Saarbrücken, TR-1109

    Google Scholar 

  13. Jansen K, Solis-Oba R, Sviridenko M (2003) Makespan minimization in job shops: a linear time approximation acheme. SIAM J Discret Math 16:288–300

    Article  MathSciNet  MATH  Google Scholar 

  14. Kannan R (1987) Minkowski’s convex body theorem and integer programming. Math Oper Res 12:415–440

    Article  MathSciNet  MATH  Google Scholar 

  15. Lenstra HW (1983) Integer programming with a fixed number of variables. Math Oper Res 8:538–548

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenstra JK, Shmoys DB, Tardos E (1990) Approximation algorithms for scheduling unrelated parallel machines. Math Program 24:259–272

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Jansen, K. (2016). Efficient Polynomial Time Approximation Scheme for Scheduling Jobs onUniform Processors. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_500

Download citation

Publish with us

Policies and ethics