Skip to main content

Geometric Shortest Paths in the Plane

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 340 Accesses

Years and Authors of Summarized Original Work

  • 1996; Mitchell

  • 1999; Hershberger, Suri

Problem Definition

Finding the shortest path between a source and a destination is a natural optimization problem with many applications. Perhaps the oldest variant of the problem is the geometric shortest path problem, in which the domain is physical space: the problem is relevant to human travelers, migrating animals, and even physical phenomena like wave propagation. The key feature that distinguishes the geometric shortest path problem from the corresponding problem in graphs or other discrete spaces is the unbounded number of paths in a multidimensional space. To solve the problem efficiently, one must use the “shortness” criterion to limit the search.

In computational geometry, physical space is modeled abstractly as the union of some number of constant-complexity primitive elements. The traditional formulation of the shortest path problem considers paths in a domain bounded by linear elements –...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Asano T, Asano T, Guibas LJ, Hershberger J, Imai H (1986) Visibility of disjoint polygons. Algorithmica 1:49–63

    Article  MathSciNet  MATH  Google Scholar 

  2. Canny J, Reif JH (1987) New lower bound techniques for robot motion planning problems. In: Proceedings of the 28th annual IEEE symposium on foundations of computer Science, Washington, DC, pp 49–60

    Google Scholar 

  3. Chazelle B, Sharir M, Welzl E (1992) Quasi-optimal upper bounds for simplex range searching and new zone theorems. Algorithmica 8:407–429

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge

    MATH  Google Scholar 

  5. Driscoll JR, Sarnak N, Sleator DD, Tarjan RE (1989) Making data structures persistent. J Comput Syst Sci 38:86–124

    Article  MathSciNet  MATH  Google Scholar 

  6. Fortune SJ (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2:153–174

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghosh SK, Mount DM (1991) An output-sensitive algorithm for computing visibility graphs. SIAM J Comput 20:888–910

    Article  MathSciNet  MATH  Google Scholar 

  8. Hershberger J, Suri S (1995) A pedestrian approach to ray shooting: Shoot a ray, take a walk. J Algorithms 18:403–431

    Article  MathSciNet  MATH  Google Scholar 

  9. Hershberger J, Suri S (1999) An optimal algorithm for Euclidean shortest paths in the plane. SIAM J Comput 28(6):2215–2256

    Article  MathSciNet  MATH  Google Scholar 

  10. Hershberger J, Suri S, Yıldız H (2013) A near-optimal algorithm for shortest paths among curved obstacles in the plane. In: Proceedings of the 29th annual symposium on computational geometry, SoCG ’13. ACM, New York, pp 359–368

    Chapter  Google Scholar 

  11. Kapoor S, Maheshwari SN, Mitchell JSB (1997) An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discret Comput Geom 18:377–383

    Article  MathSciNet  MATH  Google Scholar 

  12. Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22:560–570

    Article  Google Scholar 

  13. Matoušek J (1993) Range searching with efficient hierarchical cuttings. Discret Comput Geom 10(2):157–182

    Article  MathSciNet  MATH  Google Scholar 

  14. Megiddo N (1983) Applying parallel computation algorithms in the design of serial algorithms. J ACM 30(4):852–865

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitchell JSB (1992) L1 shortest paths among polygonal obstacles in the plane. Algorithmica 8:55–88

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitchell JSB (1996) Shortest paths among obstacles in the plane. Int J Comput Geom Appl 6:309–332

    Article  MathSciNet  MATH  Google Scholar 

  17. Pocchiola M, Vegter G (1996) Topologically sweeping visibility complexes via pseudotriangulations. Discret Comput Geom 16(4):419–453

    Article  MathSciNet  MATH  Google Scholar 

  18. Rohnert H (1988) Time and space efficient algorithms for shortest paths between convex polygons. Inf Process Lett 27:175–179

    Article  MathSciNet  MATH  Google Scholar 

  19. Schreiber Y (2010) An optimal-time algorithm for shortest paths on realistic polyhedra. Discret Comput Geom 43(1):21–53

    Article  MathSciNet  MATH  Google Scholar 

  20. Schreiber Y, Sharir M (2008) An optimal-time algorithm for shortest paths on a convex polytope in three dimensions. Discret Comput Geom 39(1–3):500–579

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hershberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Hershberger, J. (2016). Geometric Shortest Paths in the Plane. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_509

Download citation

Publish with us

Policies and ethics