Skip to main content

Kernelization, Exponential Lower Bounds

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms

Years and Authors of Summarized Original Work

  • 2009; Bodlaender, Downey, Fellows, Hermelin

Problem Definition

Research on kernelization is motivated in two ways. First, when solving a hard (e.g., NP-hard) problem in practice, a common approach is to first preprocess the instance at hand before running more time-consuming methods (like integer linear programming, branch and bound, etc.). The following is a natural question. Suppose we use polynomial time for this preprocessing phase: what can be predicted of the size of the instance resulting from preprocessing? The theory of kernelization gives us such predictions. A second motivation comes from the fact that a decidable parameterized problem belongs to the class FPT (i.e., is fixed parameter tractable,) if and only if the problem has kernelization algorithm.

A parameterized problem is a subset of \(\varSigma ^{{\ast}}\times \mathbf{N}\), for some finite set \(\varSigma\). A kernelization algorithm (or, in short kernel) for a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Arnborg S, Corneil DG, Proskurowski A (1987) Complexity of finding embeddings in a k-tree. SIAM J Algebr Discret Methods 8:277–284

    Article  MathSciNet  MATH  Google Scholar 

  2. Binkele-Raible D, Fernau H, Fomin FV, Lokshtanov D, Saurabh S, Villanger Y (2012) Kernel(s) for problems with no kernel: on out-trees with many leaves. ACM Trans Algorithms 8(5):38

    MathSciNet  MATH  Google Scholar 

  3. Bodlaender HL, Downey RG, Fellows MR, Hermelin D (2009) On problems without polynomial kernels. J Comput Syst Sci 75:423–434

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender HL, Jansen BMP, Kratsch S (2011) Cross-composition: a new technique for kernelization lower bounds. In: Schwentick T, Dürr C (eds) Proceedings 28th international symposium on theoretical aspects of computer science, STACS 2011, Dortmund. Schloss Dagstuhl – Leibnitz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol 9, pp 165–176

    Google Scholar 

  5. Bodlaender HL, Thomassé S, Yeo A (2011) Kernel bounds for disjoint cycles and disjoint paths. Theor Comput Sci 412:4570–4578

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender HL, Jansen BMP, Kratsch S (2012) Kernelization lower bounds by cross-composition. CoRR abs/1206.5941

    Google Scholar 

  7. Chen Y, Flum J, Müller M (2011) Lower bounds for kernelizations and other preprocessing procedures. Theory Comput Syst 48(4):803–839

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan M, Kratsch S, Pilipczuk M, Pilipczuk M, Wahlström M (2012) Clique cover and graph separation: new incompressibility results. In: Czumaj A, Mehlhorn K, Pitts AM, Wattenhofer R (eds) Proceedings of the 39th international colloquium on automata, languages and programming, ICALP 2012, Part I, Warwick. Lecture notes in computer science, vol 7391. Springer, pp 254–265

    Google Scholar 

  9. Dom M, Lokshtanov D, Saurabh S (2009) Incompressibility through colors and IDs. In: Albers S, Marchetti-Spaccamela A, Matias Y, Nikoletseas SE, Thomas W (eds) Proceedings of the 36th international colloquium on automata, languages and programming, ICALP 2009, Part I, Rhodes. Lecture notes in computer science, vol 5555. Springer, pp 378–389

    Google Scholar 

  10. Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science. Springer, London

    Book  MATH  Google Scholar 

  11. Drucker A (2012) New limits to classical and quantum instance compression. In: Proceedings of the 53rd annual symposium on foundations of computer science, FOCS 2012, New Brunswick, pp 609–618

    Google Scholar 

  12. Fortnow L, Santhanam R (2011) Infeasibility of instance compression and succinct PCPs for NP. J Comput Syst Sci 77:91–106

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutin G, Muciaccia G, Yeo: A (2013) (Non-)existence of polynomial kernels for the test cover problem. Inf Process Lett 113:123–126

    Google Scholar 

  14. Harnik D, Naor M (2010) On the compressibility of \(\mathcal{N}\mathcal{P}\) instances and cryptographic applications. SIAM J Comput 39:1667–1713

    Article  MathSciNet  MATH  Google Scholar 

  15. Hermelin D, Wu X (2012) Weak compositions and their applications to polynomial lower bounds for kernelization. In: Rabani Y (ed) Proceedings of the 22nd annual ACM-SIAM symposium on discrete algorithms, SODA 2012, Kyoto. SIAM, pp 104–113

    Google Scholar 

  16. Hermelin D, Kratsch S, Soltys K, Wahlström M, Wu X (2013) A completeness theory for polynomial (turing) kernelization. In: Gutin G, Szeider S (eds) Proceedings of the 8th international symposium on parameterized and exact computation, IPEC 2013, Sophia Antipolis. Lecture notes in computer science, vol 8246. Springer, pp 202–215

    Google Scholar 

  17. Jansen BMP, Bodlaender HL (2013) Vertex cover kernelization revisited – upper and lower bounds for a refined parameter. Theory Comput Syst 53:263–299

    Article  MathSciNet  MATH  Google Scholar 

  18. Kratsch S (2012) Co-nondeterminism in compositions: a kernelization lower bound for a Ramsey-type problem. In: Proceedings of the 22nd annual ACM-SIAM symposium on discrete algorithms, SODA 2012, Kyoto, pp 114–122

    Google Scholar 

  19. Yap HP (1986) Some topics in graph theory. London mathematical society lecture note series, vol 108. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Bodlaender, H.L. (2016). Kernelization, Exponential Lower Bounds. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_521

Download citation

Publish with us

Policies and ethics