Skip to main content

Colouring Non-sparse Random Intersection Graphs

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms

Years and Authors of Summarized Original Work

  • 2009; Nikoletseas, Raptopoulos, Spirakis

Problem Definition

A proper coloring of a graph G = (V, E) is an assignment of colors to all vertices in V in such a way that no two adjacent vertices have the same color. A k-coloring of G is a coloring that uses k colors. The minimum number of colors that can be used to properly color G is the (vertex) chromatic number of G and is denoted by χ(G).

Deciding whether a given graph admits a k-coloring for a given k ≥ 3 is well known to be NP complete. In particular, it is NP hard to compute the chromatic number [5]. The best known approximation algorithm computes a coloring of size at most within a factor \(O\left (\frac{n(\log \log n)^{2}} {(\log n)^{3}} \right )\) of the chromatic number [6]. Furthermore, for any constant ε > 0, it is NP hard to approximate the chromatic number within a factor n1−ε [14].

The intractability of the vertex coloring problem for arbitrary graphs leads researchers to the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Behrisch M, Taraz A, Ueckerdt M (2009) Colouring random intersection graphs and complex networks. SIAM J Discret Math 23(1):288–299

    Article  MathSciNet  MATH  Google Scholar 

  2. Erdős P, Selfridge J (1973) On a combinatorial game. J Comb Theory (A) 14:298–301

    Article  MathSciNet  MATH  Google Scholar 

  3. Fill JA, Sheinerman ER, Singer-Cohen KB (2000) Random intersection graphs when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models. Random Struct Algorithms 16(2):156–176

    Article  MathSciNet  MATH  Google Scholar 

  4. Frieze A (1990) On the independence number of random graphs. Discret Math 81:171–175

    Article  MathSciNet  MATH  Google Scholar 

  5. Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified NP-complete problems. In: Proceedings of the sixth annual ACM symposium on theory of computing, Seattle, pp 47–63. doi:10.1145/800119.803884

    MATH  Google Scholar 

  6. Halldórsson MM (1993) A still better performance guarantee for approximate graph coloring. Inf Process Lett 45:19–23. doi:10.1016/0020-0190(93)90246-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Łuczak L (2005) The chromatic number of random graphs. Combinatorica 11(1):45–54

    Article  MathSciNet  MATH  Google Scholar 

  8. Molloy M, Reed B (2002) Graph colouring and the probabilistic method. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  9. Karoński M, Scheinerman ER, Singer-Cohen KB (1999) On random intersection graphs: the subgraph problem. Comb Probab Comput J 8:131–159

    Article  MathSciNet  MATH  Google Scholar 

  10. Nikoletseas SE, Raptopoulos CL, Spirakis PG (2008) Large independent sets in general random intersection graphs. Theor Comput Sci (TCS) J Spec Issue Glob Comput 406(3):215–224

    Article  MathSciNet  MATH  Google Scholar 

  11. Nikoletseas SE, Raptopoulos CL, Spirakis PG (2009) Combinatorial properties for efficient communication in distributed networks with local interactions. In: Proceedings of the 23rd IEEE international parallel and distributed processing symposium (IPDPS), Rome, pp 1–11

    Google Scholar 

  12. Rybarczyk K (2011) Equivalence of a random intersection graph and G(n, p). Random Struct Algorithms 38(1–2):205–234

    Article  MathSciNet  MATH  Google Scholar 

  13. Singer-Cohen KB (1995) Random intersection graphs. PhD thesis, John Hopkins University

    Google Scholar 

  14. Zuckerman D (2007) Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput 3:103–128. doi:10.4086/toc.2007.v003a006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoforos L. Raptopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Raptopoulos, C.L. (2016). Colouring Non-sparse Random Intersection Graphs. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_597

Download citation

Publish with us

Policies and ethics