Years and Authors of Summarized Original Work
-
2007; Braverman, Ostrovsky
Problem Definition
In the last decade, the theoretical study of the sliding window model was developed to advance applications with very large input and time-sensitive output. In some practical situations, input might be seen as an ordered sequence, and it is useful to restrict computations to recent portions of the input. Examples include the analysis of recent tweets and time series of the stock market. To address the aforementioned practical situations, Datar et al. [20] introduced the sliding window model that assumes that the input is a stream (i.e., the ordered sequence) of data elements and divides the data elements into two categories: active elements and expiredelements. Typically, a recent portion (i.e., a suffix) of the stream defines the window of active elements, and the reminder (i.e., a complimenting prefix) of the stream defines the set of expired elements. When a new data element arrives, the...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Aggarwal C (2007) Data streams: models and algorithms. Advances in database systems. http://www.springer.com/west/home/default?SGWID=4-40356-22-107949228-0
Arasu A, Manku GS (2004) Approximate counts and quantiles over sliding windows. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’04). ACM, New York, pp 286–296. doi:10.1145/1055558.1055598
Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’02). ACM, New York, pp 1–16. doi:10.1145/543613.543615
Babcock B, Datar M, Motwani R (2002) Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms (SODA’02). Society for Industrial and Applied Mathematics, Philadelphia, pp 633–634. http://dl.acm.org/citation.cfm?id=545381.545465
Babcock B, Datar M, Motwani R, O’Callaghan L (2003) Maintaining variance and k-medians over data stream windows. In: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’03). ACM, New York, pp 234–243. doi:10.1145/773153.773176
Braverman V, Ostrovsky R (2007) Smooth histograms for sliding windows. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science (FOCS’07). IEEE Computer Society, Washington, DC, pp 283–293. doi:10.1109/FOCS.2007.63
Braverman V, Ostrovsky R (2010) Effective computations on sliding windows. SIAM J Comput 39(6):2113–2131. doi:10.1137/090749281
Braverman V, Ostrovsky R (2010) Zero-one frequency laws. In: Proceedings of the 42nd ACM symposium on theory of computing (STOC’10). ACM, New York, pp 281–290. doi:10.1145/1806689.1806729
Braverman V, Ostrovsky R, Zaniolo C (2009) Optimal sampling from sliding windows. In: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’09). ACM, New York, pp 147–156. doi:10.1145/1559795.1559818
Braverman V, Ostrovsky R, Zaniolo C (2012) Optimal sampling from sliding windows. J Comput Syst Sci 78(1):260–272. doi:10.1016/j.jcss.2011.04.004
Braverman V, Gelles R, Ostrovsky R (2013) How to catch l 2-heavy-hitters on sliding windows. In: Du DZ, Zhang G (eds) Computing and combinatorics. Lecture notes in computer science, vol 7936. Springer, Berlin/Heidelberg, pp 638–650. doi:10.1007/978-3-642-38768-5_56
Braverman V, Katzman J, Seidell C, Vorsanger G (2014) An optimal algorithm for large frequency moments using \(\text{O}(n^{1-2/k})\) bits. In: Proceedings of the 18th international workshop on randomization and computation (RANDOM’2014)
Braverman V, Ostrovsky R, Roytman A (2014) Universal Streaming. ArXiv e-prints 1408.2604
Chen K (2009) On coresets for $k$-median and $k$-means clustering in metric and euclidean spaces and their applications. SIAM J Comput 39(3):923–947. doi:http://dx.doi.org/10.1137/070699007
Chi Y, Wang H, Yu PS, Muntz RR (2004) Moment: Maintaining closed frequent itemsets over a stream sliding window. In: ICDM, pp 59–66
Cormode G, Yi K (2012) Tracking distributed aggregates over time-based sliding windows. In: Proceedings of the 24th international conference on scientific and statistical database management (SSDBM’12). Springer, Berlin/Heidelberg, pp 416–430. doi:10.1007/978-3-642-31235-9_28
Crouch MS, McGregor A, Stubbs D (2013) Dynamic graphs in the sliding-window model. In: ESA, pp 337–348
Dang XH, Lee VC, Ng WK, Ong KL (2009) Incremental and adaptive clustering stream data over sliding window. In: Proceedings of the 20th international conference on database and expert systems applications (DEXA’09). Springer, Berlin/Heidelberg, pp 660–674. doi:10.1007/978-3-642-03573-9_55
Datar M, Muthukrishnan MS (2002) Estimating rarity and similarity over data stream windows. In: Proceedings of the 10th annual European symposium on algorithms (ESA’02). Springer, London, pp 323–334. http://dl.acm.org/citation.cfm?id=647912.740833
Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows. SIAM J Comput 31(6):1794–1813
Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows: (extended abstract). In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms (SODA’02). Society for Industrial and Applied Mathematics, Philadelphia, pp 635–644. http://dl.acm.org/citation.cfm?id=545381.545466
Feigenbaum J, Kannan S, Zhang J (2004) Computing diameter in the streaming and sliding-window models. Algorithmica 41(1):25–41
Feigenbaum J, Kannan S, Zhang J (2005) Computing diameter in the streaming and sliding-window models. Algorithmica 41:25–41
Gibbons PB, Tirthapura S (2002) Distributed streams algorithms for sliding windows. In: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures (SPAA’02). ACM, New York, pp 63–72. doi:10.1145/564870.564880
Golab L, Özsu MT (2003) Processing sliding window multi-joins in continuous queries over data streams. In: Proceedings of the 29th international conference on Very large data bases (VLDB’03), vol 29. VLDB Endowment, pp 500–511. http://dl.acm.org/citation.cfm?id=1315451.1315495
Golab L, DeHaan D, Demaine ED, Lopez-Ortiz A, Munro JI (2003) Identifying frequent items in sliding windows over on-line packet streams. In: Proceedings of the 3rd ACM SIGCOMM conference on internet measurement (IMC’03). ACM, New York, pp 173–178. doi:10.1145/948205.948227
Kane DM, Nelson J, Woodruff DP (2010) On the exact space complexity of sketching and streaming small norms. In: Proceedings of the 21st annual ACM-SIAM symposium on discrete algorithms (SODA’10)
Kane DM, Nelson J, Woodruff DP (2010) An optimal algorithm for the distinct elements problem. In: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’10). ACM, New York, pp 41–52. doi:10.1145/1807085.1807094
Lee LK, Ting HF (2006) Maintaining significant stream statistics over sliding windows. In: SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. ACM, New York, pp 724–732. doi:http://doi.acm.org/10.1145/1109557.1109636
Lee LK, Ting HF (2006) A simpler and more efficient deterministic scheme for finding frequent items over sliding windows. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’06). ACM, New York, pp 290–297. doi:http://doi.acm.org/10.1145/1142351.1142393
Li J, Maier D, Tufte K, Papadimos V, Tucker PA (2005) No pane, no gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Rec 34(1):39–44. doi:10.1145/1058150.1058158
McGregor A (2014) Graph stream algorithms: A survey. SIGMOD Rec 43(1):9–20. doi:10.1145/2627692.2627694
Ren J, Ma R, Ren J (2009) Density-based data streams clustering over sliding windows. In: Proceedings of the 6th international conference on Fuzzy systems and knowledge discovery (FSKD’09), vol 5. IEEE Press, Piscataway, pp 248–252. http://dl.acm.org/citation.cfm?id=1801874.1801929
Sohler C (2006) List of open problems in sublinear algorithms: problem 20. http://sublinear.info/20
Tatbul N, Zdonik S (2006) Window-aware load shedding for aggregation queries over data streams. In: Proceedings of the 32nd international conference on very large data bases (VLDB’06). VLDB Endowment, pp 799–810. http://dl.acm.org/citation.cfm?id=1182635.1164196
Zhang L, Li Z, Yu M, Wang Y, Jiang Y (2005) Random sampling algorithms for sliding windows over data streams. In: Proceedings of the 11th joint international computer conference, pp 572–575
Acknowledgements
This material is based upon work supported in part by the National Science Foundation under Grant No. 1447639.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this entry
Cite this entry
Braverman, V. (2016). Sliding Window Algorithms. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_797
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2864-4_797
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2863-7
Online ISBN: 978-1-4939-2864-4
eBook Packages: Computer ScienceReference Module Computer Science and Engineering