Skip to main content

Meta-Analysis in Gene Expression Studies

  • Protocol
  • First Online:
Statistical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1418))

Abstract

This chapter introduces methods to synthesize experimental results from independent high-throughput genomic experiments, with a focus on adaptation of traditional methods from systematic review of clinical trials and epidemiological studies. First, it reviews methods for identifying, acquiring, and preparing individual patient data for meta-analysis. It then reviews methodology for synthesizing results across studies and assessing heterogeneity, first through outlining of methods and then through a step-by-step case study in identifying genes associated with survival in high-grade serous ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moher D, Liberati A, Tetzlaff J et al (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341

    Article  PubMed  Google Scholar 

  2. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  3. Moher D, Olkin I (1995) Meta-analysis of randomized controlled trials: a concern for standards. JAMA 274:1962–1964

    Article  CAS  PubMed  Google Scholar 

  4. Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage, Thousand Oaks, CA

    Google Scholar 

  5. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2011) Introduction to meta-analysis. John Wiley, New York, NY

    Google Scholar 

  6. Culhane AC, Schröder MS, Sultana R et al (2011) GeneSigDB: a manually curated database and resource for analysis of gene expression signatures. Nucleic Acids Res 40:D1060–D1066

    Article  PubMed  PubMed Central  Google Scholar 

  7. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolesnikov N, Hastings E, Keays M et al (2015) ArrayExpress update-simplifying data submissions. Nucleic Acids Res 43:D1113–D1116

    Article  PubMed  PubMed Central  Google Scholar 

  9. Taminau J, Steenhoff D, Coletta A et al (2011) inSilicoDb: an R/Bioconductor package for accessing human Affymetrix expert-curated datasets from GEO. Bioinformatics 27:3204–3205

    Article  CAS  PubMed  Google Scholar 

  10. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeeberg BR, Riss J, Kane DW et al (2004) Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics 5:80

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haider S, Ballester B, Smedley D et al (2009) BioMart Central Portal—unified access to biological data. Nucleic Acids Res 37:W23–W27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Y, Davis S, Stephens R et al (2008) GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 24:2798–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847

    Article  PubMed  Google Scholar 

  16. Ganzfried BF, Riester M, Haibe-Kains B et al. (2013) curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database 2013: bat013

    Google Scholar 

  17. Riester M, Wei W, Waldron L et al (2014) Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. doi:10.1093/jnci/dju048

    Google Scholar 

  18. Waldron L, Haibe-Kains B, Culhane AC et al (2014) Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst. doi:10.1093/jnci/dju049

    Google Scholar 

  19. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  20. McCall MN, Bolstad BM, Irizarry RA (2010) Frozen robust multiarray analysis (fRMA). Biostatistics 11:242–253

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739

    Article  CAS  PubMed  Google Scholar 

  22. Johnson WE, Li C, Rabinovic A (2006) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  PubMed  Google Scholar 

  23. Miller JA, Cai C, Langfelder P et al (2011) Strategies for aggregating gene expression data: the collapse Rows R function. BMC Bioinformatics 12:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Q, Birkbak NJ, Gyorffy B et al (2011) Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics 12:474

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dai M, Wang P, Boyd AD et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175

    Article  PubMed  PubMed Central  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang DW, Sherman BT, Tan Q et al (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed  PubMed Central  Google Scholar 

  28. Altschuler GM, Hofmann O, Kalatskaya I et al (2013) Pathprinting: an integrative approach to understand the functional basis of disease. Genome Med 5:68

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milacic M, Haw R, Rothfels K et al (2012) Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel) 4:1180–1211

    Article  CAS  Google Scholar 

  32. Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  Google Scholar 

  33. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tarca AL, Bhatti G, Romero R (2013) A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS One 8:e79217

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verhaak RGW, Tamayo P, Yang J-Y et al (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 123:517–525

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozawa T, Riester M, Cheng Y-K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E (2004) A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res 10:2922–2927

    Article  CAS  PubMed  Google Scholar 

  39. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48

    Article  Google Scholar 

  40. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3

    Google Scholar 

  41. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  CAS  PubMed  Google Scholar 

  42. Hong F, Breitling R, McEntee CW et al (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825–2827

    Article  CAS  PubMed  Google Scholar 

  43. Hong F, Breitling R (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24:374–382

    Article  CAS  PubMed  Google Scholar 

  44. Heskes T, Eisinga R, Breitling R (2014) A fast algorithm for determining bounds and accurate approximate p -values of the rank product statistic for replicate experiments. BMC Bioinformatics 15:367

    PubMed  PubMed Central  Google Scholar 

  45. Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40:3785–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Ghosh D (2014) Meta-analysis based on weighted ordered P-values for genomic data with heterogeneity. BMC Bioinformatics 15:226

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reis PP, Waldron L, Perez-Ordonez B et al (2011) A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC Cancer 11:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng X, Lu W, Liu M (2015) Identification of homogeneous and heterogeneous variables in pooled cohort studies. Biometrics. doi:10.1111/biom.12285

    Google Scholar 

  49. Ramasamy A, Mondry A, Holmes CC, Altman DG (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5:e184

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bernau C, Riester M, Boulesteix A-L et al (2014) Cross-study validation for the assessment of prediction algorithms. Bioinformatics 30:i105–i112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Riester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Waldron, L., Riester, M. (2016). Meta-Analysis in Gene Expression Studies. In: Mathé, E., Davis, S. (eds) Statistical Genomics. Methods in Molecular Biology, vol 1418. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3578-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3578-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3576-5

  • Online ISBN: 978-1-4939-3578-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics