Abstract
This chapter introduces methods to synthesize experimental results from independent high-throughput genomic experiments, with a focus on adaptation of traditional methods from systematic review of clinical trials and epidemiological studies. First, it reviews methods for identifying, acquiring, and preparing individual patient data for meta-analysis. It then reviews methodology for synthesizing results across studies and assessing heterogeneity, first through outlining of methods and then through a step-by-step case study in identifying genes associated with survival in high-grade serous ovarian cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Moher D, Liberati A, Tetzlaff J et al (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188
Moher D, Olkin I (1995) Meta-analysis of randomized controlled trials: a concern for standards. JAMA 274:1962–1964
Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage, Thousand Oaks, CA
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2011) Introduction to meta-analysis. John Wiley, New York, NY
Culhane AC, Schröder MS, Sultana R et al (2011) GeneSigDB: a manually curated database and resource for analysis of gene expression signatures. Nucleic Acids Res 40:D1060–D1066
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210
Kolesnikov N, Hastings E, Keays M et al (2015) ArrayExpress update-simplifying data submissions. Nucleic Acids Res 43:D1113–D1116
Taminau J, Steenhoff D, Coletta A et al (2011) inSilicoDb: an R/Bioconductor package for accessing human Affymetrix expert-curated datasets from GEO. Bioinformatics 27:3204–3205
Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180
Zeeberg BR, Riss J, Kane DW et al (2004) Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics 5:80
Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80
Haider S, Ballester B, Smedley D et al (2009) BioMart Central Portal—unified access to biological data. Nucleic Acids Res 37:W23–W27
Zhu Y, Davis S, Stephens R et al (2008) GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 24:2798–2800
Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847
Ganzfried BF, Riester M, Haibe-Kains B et al. (2013) curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database 2013: bat013
Riester M, Wei W, Waldron L et al (2014) Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. doi:10.1093/jnci/dju048
Waldron L, Haibe-Kains B, Culhane AC et al (2014) Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst. doi:10.1093/jnci/dju049
Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264
McCall MN, Bolstad BM, Irizarry RA (2010) Frozen robust multiarray analysis (fRMA). Biostatistics 11:242–253
Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739
Johnson WE, Li C, Rabinovic A (2006) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127
Miller JA, Cai C, Langfelder P et al (2011) Strategies for aggregating gene expression data: the collapse Rows R function. BMC Bioinformatics 12:322
Li Q, Birkbak NJ, Gyorffy B et al (2011) Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics 12:474
Dai M, Wang P, Boyd AD et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175
Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550
Huang DW, Sherman BT, Tan Q et al (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183
Altschuler GM, Hofmann O, Kalatskaya I et al (2013) Pathprinting: an integrative approach to understand the functional basis of disease. Genome Med 5:68
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477
Milacic M, Haw R, Rothfels K et al (2012) Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel) 4:1180–1211
Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261
Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7
Tarca AL, Bhatti G, Romero R (2013) A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS One 8:e79217
Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112
Verhaak RGW, Tamayo P, Yang J-Y et al (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 123:517–525
Ozawa T, Riester M, Cheng Y-K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288–300
Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E (2004) A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res 10:2922–2927
Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48
Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3
Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92
Hong F, Breitling R, McEntee CW et al (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825–2827
Hong F, Breitling R (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24:374–382
Heskes T, Eisinga R, Breitling R (2014) A fast algorithm for determining bounds and accurate approximate p -values of the rank product statistic for replicate experiments. BMC Bioinformatics 15:367
Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40:3785–3799
Li Y, Ghosh D (2014) Meta-analysis based on weighted ordered P-values for genomic data with heterogeneity. BMC Bioinformatics 15:226
Reis PP, Waldron L, Perez-Ordonez B et al (2011) A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC Cancer 11:437
Cheng X, Lu W, Liu M (2015) Identification of homogeneous and heterogeneous variables in pooled cohort studies. Biometrics. doi:10.1111/biom.12285
Ramasamy A, Mondry A, Holmes CC, Altman DG (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5:e184
Bernau C, Riester M, Boulesteix A-L et al (2014) Cross-study validation for the assessment of prediction algorithms. Bioinformatics 30:i105–i112
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this protocol
Cite this protocol
Waldron, L., Riester, M. (2016). Meta-Analysis in Gene Expression Studies. In: Mathé, E., Davis, S. (eds) Statistical Genomics. Methods in Molecular Biology, vol 1418. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3578-9_8
Download citation
DOI: https://doi.org/10.1007/978-1-4939-3578-9_8
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-3576-5
Online ISBN: 978-1-4939-3578-9
eBook Packages: Springer Protocols