Abstract
This chapter delivers an overview of traditional mechanisms to detect and stop unwanted emails. These mechanisms include email authentication (e.g., DKIM, SPF, DMARC), blacklisting (e.g., DNSBL), and content-based spam filtering (e.g., Naive Bayes Classifier). We explain the extent to which they can be useful to block scam, and point out evasion techniques that help spammers and scammers survive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Analysis of Threats Motivating DomainKeys Identified Mail (DKIM) (RFC 4686), https://tools.ietf.org/html/rfc4686#section-4.1.4 (2014). Accessed 17 Apr 2016
Bag-of-Words Model, https://en.wikipedia.org/wiki/Bag-of-words_model. Accessed 17 Apr 2016
H. Ballani, P. Francis, X. Zhang, A study of prefix hijacking and interception in the internet. ACM SIGCOMM Comput. Commun. Rev. 37, 265–276 (2007)
A. Bergholz, G. Paass, F. Reichartz, S. Strobel, M.-F. Moens, B. Witten, Detecting known and new salting tricks in unwanted emails, in CEAS (2008)
A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, S. Strobel, New filtering approaches for phishing email. J. Comput. Secur. 18 (1), 7–35 (2010)
B. Biggio, G. Fumera, I. Pillai, F. Roli, Image spam filtering by content obscuring detection, in CEAS (2007)
B. Biggio, G. Fumera, I. Pillai, F. Roli, A survey and experimental evaluation of image spam filtering techniques. Pattern Recogn. Lett. 32 (10), 1436–1446 (2011)
Business email compromise, http://www.ic3.gov/media/2015/150827-1.aspx (2015). Accessed 17 Apr 2016
X. Carreras, L. Mrquez and J.G. Salgado, Boosting trees for anti-apam email filtering, in Proceedings of RANLP-01, 4th International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, BG, (2001).
W.W. Cohen., Learning rules that classify e-mail, in AAAI Spring Symposium on Machine Learning in Information Access, vol. 18 (1996), p. 25
DNS blacklists and whitelists, https://tools.ietf.org/html/rfc5782 (2010). Accessed 17 Apr 2016
DNSBL, https://en.wikipedia.org/wiki/DNSBL (2010). Accessed 17 Apr 2016
Domain-based message authentication, reporting, and conformance (DMARC), https://tools.ietf.org/html/rfc7489 (2015) Accessed 17 Apr 2016
DomainKeys Identified Mail (DKIM) Signatures, https://tools.ietf.org/html/rfc6376 (2011) Accessed 17 Apr 2016
H. Drucker, D. Wu, V.N. Vapnik, Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10 (5), 1048–1054 (1999)
Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, J.A. Halderman, Neither snow nor rain nor mitm…: An empirical analysis of email delivery security, in Proceedings of the 2015 ACM Conference on Internet Measurement Conference (ACM, 2015), pp. 27–39
J. Graham-Cumming, How to beat an adaptive spam filter, in Presentation at the MIT Spam Conference (2004)
Internet Security Threat Report (ISTR), https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf (2016). Accessed 17 Apr 2016
M. Jakobsson, Z. Ramzan, Crimeware: Understanding New Attacks and Defenses, 1st edn. (Addison-Wesley Professional, 2008)
J. Jung, E. Sit, An empirical study of spam traffic and the use of DNS black lists, in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement (ACM, 2004), pp. 370–375
C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, S. Savage, Spamalytics: an empirical analysis of spam marketing conversion, in Proceedings of the 15th ACM Conference on CCS (ACM, 2008)
C. Karlberger, G. Bayler, C. Kruegel, E. Kirda, Exploiting redundancy in natural language to penetrate Bayesian spam filters, in Workshop on Offensive Technologies (WOOT), vol. 7 (2007), pp. 1–7
C. Liu, S. Stamm, Fighting unicode-obfuscated spam, in Proceedings of the Anti-phishing Working Groups 2nd Annual eCrime Researchers Summit (ACM, 2007), pp. 45–59
D. Lowd, C. Meek, Good word attacks on statistical spam filters, in CEAS (2005)
V. Metsis, I. Androutsopoulos, G. Paliouras, Spam filtering with naive Nayes – which naive Bayes? in CEAS (2006), pp. 27–28
G.R. Newman, R.V. Clarke, Superhighway Robbery, Preventing E-commerce Crime, Willan Publishing, Routledge, USA (2013)
S. Palka and Damon McCoy. Fuzzing e-mail filters with generative grammars and n-gram analysis, in 9th USENIX Workshop on Offensive Technologies (WOOT) (2015)
A. Ramachandran, N. Feamster, Understanding the network-level behavior of spammers. ACM SIGCOMM Comput. Commun. Rev. 36 (4), 291–302 (2006)
G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos, P. Stamatopoulos, A memory-based approach to anti-spam filtering for mailing lists. Inf. Retr. 6 (1), 49–73 (2003)
Sender Policy Framework (SPF) for authorizing use of domains in email, version 1, https://tools.ietf.org/html/rfc7208 (2014) Accessed 17 Apr 2016
Smart people easier to scam. 419 advance fee fraud statistics 2013, http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf (2013). Accessed 17 Apr 2016
Symantec, Internet Security Threat Report (ISRT). https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347931_GA-internet-security-threat-report-volume-20-2015-appendices.pdf (2014). Accessed 17 Apr 2016
Z. Wang, W.K. Josephson, Q. Lv, M. Charikar, K. Li, Filtering image spam with near-duplicate detection, in CEAS (2007)
G.L. Wittel, S.F. Wu, On attacking statistical spam filters, in CEAS (2004)
Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, I. Osipkov, Spamming botnets: signatures and characteristics. ACM SIGCOMM Comput. Commun. Rev. 38, 171–182 (2008)
J. Zdziarski, Bayesian noise reduction: Contextual symmetry logic utilizing pattern consistency analysis, in Proceedings of the MIT Spam Conference, Cambridge, MA, USA (2005)
L. Zhang, T.-S. Yao, Filtering junk mail with a maximum entropy model, in Proceeding of 20th International Conference on Computer Processing of Oriental Languages (ICCPOL03) (2003, pp. 446–453
L. Zhang, J. Zhu, T. Yao, An evaluation of statistical spam filtering techniques. ACM Trans. Asian Lang. Inf. Process. 3 (4), 243–269 (2004)
C.C. Zou, D. Towsley, W. Gong, Email worm modeling and defense, in Proceedings of the 13th International Conference on Computer Communications and Networks (ICCCN) (IEEE, 2004), pp. 409–414
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this chapter
Cite this chapter
Siadati, H., Jafarikhah, S., Jakobsson, M. (2016). Traditional Countermeasures to Unwanted Email. In: Jakobsson, M. (eds) Understanding Social Engineering Based Scams. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6457-4_5
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6457-4_5
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-6455-0
Online ISBN: 978-1-4939-6457-4
eBook Packages: Computer ScienceComputer Science (R0)