Skip to main content

Traditional Countermeasures to Unwanted Email

  • Chapter
Understanding Social Engineering Based Scams

Abstract

This chapter delivers an overview of traditional mechanisms to detect and stop unwanted emails. These mechanisms include email authentication (e.g., DKIM, SPF, DMARC), blacklisting (e.g., DNSBL), and content-based spam filtering (e.g., Naive Bayes Classifier). We explain the extent to which they can be useful to block scam, and point out evasion techniques that help spammers and scammers survive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Analysis of Threats Motivating DomainKeys Identified Mail (DKIM) (RFC 4686), https://tools.ietf.org/html/rfc4686#section-4.1.4 (2014). Accessed 17 Apr 2016

  2. Bag-of-Words Model, https://en.wikipedia.org/wiki/Bag-of-words_model. Accessed 17 Apr 2016

  3. H. Ballani, P. Francis, X. Zhang, A study of prefix hijacking and interception in the internet. ACM SIGCOMM Comput. Commun. Rev. 37, 265–276 (2007)

    Article  Google Scholar 

  4. A. Bergholz, G. Paass, F. Reichartz, S. Strobel, M.-F. Moens, B. Witten, Detecting known and new salting tricks in unwanted emails, in CEAS (2008)

    Google Scholar 

  5. A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, S. Strobel, New filtering approaches for phishing email. J. Comput. Secur. 18 (1), 7–35 (2010)

    Article  Google Scholar 

  6. B. Biggio, G. Fumera, I. Pillai, F. Roli, Image spam filtering by content obscuring detection, in CEAS (2007)

    Google Scholar 

  7. B. Biggio, G. Fumera, I. Pillai, F. Roli, A survey and experimental evaluation of image spam filtering techniques. Pattern Recogn. Lett. 32 (10), 1436–1446 (2011)

    Article  Google Scholar 

  8. Business email compromise, http://www.ic3.gov/media/2015/150827-1.aspx (2015). Accessed 17 Apr 2016

  9. X. Carreras, L. Mrquez and J.G. Salgado, Boosting trees for anti-apam email filtering, in Proceedings of RANLP-01, 4th International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, BG, (2001).

    Google Scholar 

  10. W.W. Cohen., Learning rules that classify e-mail, in AAAI Spring Symposium on Machine Learning in Information Access, vol. 18 (1996), p. 25

    Google Scholar 

  11. DNS blacklists and whitelists, https://tools.ietf.org/html/rfc5782 (2010). Accessed 17 Apr 2016

  12. DNSBL, https://en.wikipedia.org/wiki/DNSBL (2010). Accessed 17 Apr 2016

  13. Domain-based message authentication, reporting, and conformance (DMARC), https://tools.ietf.org/html/rfc7489 (2015) Accessed 17 Apr 2016

  14. DomainKeys Identified Mail (DKIM) Signatures, https://tools.ietf.org/html/rfc6376 (2011) Accessed 17 Apr 2016

  15. H. Drucker, D. Wu, V.N. Vapnik, Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10 (5), 1048–1054 (1999)

    Article  Google Scholar 

  16. Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, J.A. Halderman, Neither snow nor rain nor mitm…: An empirical analysis of email delivery security, in Proceedings of the 2015 ACM Conference on Internet Measurement Conference (ACM, 2015), pp. 27–39

    Google Scholar 

  17. J. Graham-Cumming, How to beat an adaptive spam filter, in Presentation at the MIT Spam Conference (2004)

    Google Scholar 

  18. Internet Security Threat Report (ISTR), https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf (2016). Accessed 17 Apr 2016

  19. M. Jakobsson, Z. Ramzan, Crimeware: Understanding New Attacks and Defenses, 1st edn. (Addison-Wesley Professional, 2008)

    Google Scholar 

  20. J. Jung, E. Sit, An empirical study of spam traffic and the use of DNS black lists, in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement (ACM, 2004), pp. 370–375

    Google Scholar 

  21. C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, S. Savage, Spamalytics: an empirical analysis of spam marketing conversion, in Proceedings of the 15th ACM Conference on CCS (ACM, 2008)

    Google Scholar 

  22. C. Karlberger, G. Bayler, C. Kruegel, E. Kirda, Exploiting redundancy in natural language to penetrate Bayesian spam filters, in Workshop on Offensive Technologies (WOOT), vol. 7 (2007), pp. 1–7

    Google Scholar 

  23. C. Liu, S. Stamm, Fighting unicode-obfuscated spam, in Proceedings of the Anti-phishing Working Groups 2nd Annual eCrime Researchers Summit (ACM, 2007), pp. 45–59

    Google Scholar 

  24. D. Lowd, C. Meek, Good word attacks on statistical spam filters, in CEAS (2005)

    Google Scholar 

  25. V. Metsis, I. Androutsopoulos, G. Paliouras, Spam filtering with naive Nayes – which naive Bayes? in CEAS (2006), pp. 27–28

    Google Scholar 

  26. G.R. Newman, R.V. Clarke, Superhighway Robbery, Preventing E-commerce Crime, Willan Publishing, Routledge, USA (2013)

    Google Scholar 

  27. S. Palka and Damon McCoy. Fuzzing e-mail filters with generative grammars and n-gram analysis, in 9th USENIX Workshop on Offensive Technologies (WOOT) (2015)

    Google Scholar 

  28. A. Ramachandran, N. Feamster, Understanding the network-level behavior of spammers. ACM SIGCOMM Comput. Commun. Rev. 36 (4), 291–302 (2006)

    Article  Google Scholar 

  29. G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos, P. Stamatopoulos, A memory-based approach to anti-spam filtering for mailing lists. Inf. Retr. 6 (1), 49–73 (2003)

    Article  Google Scholar 

  30. Sender Policy Framework (SPF) for authorizing use of domains in email, version 1, https://tools.ietf.org/html/rfc7208 (2014) Accessed 17 Apr 2016

  31. Smart people easier to scam. 419 advance fee fraud statistics 2013, http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf (2013). Accessed 17 Apr 2016

  32. Symantec, Internet Security Threat Report (ISRT). https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347931_GA-internet-security-threat-report-volume-20-2015-appendices.pdf (2014). Accessed 17 Apr 2016

  33. Z. Wang, W.K. Josephson, Q. Lv, M. Charikar, K. Li, Filtering image spam with near-duplicate detection, in CEAS (2007)

    Google Scholar 

  34. G.L. Wittel, S.F. Wu, On attacking statistical spam filters, in CEAS (2004)

    Google Scholar 

  35. Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, I. Osipkov, Spamming botnets: signatures and characteristics. ACM SIGCOMM Comput. Commun. Rev. 38, 171–182 (2008)

    Article  Google Scholar 

  36. J. Zdziarski, Bayesian noise reduction: Contextual symmetry logic utilizing pattern consistency analysis, in Proceedings of the MIT Spam Conference, Cambridge, MA, USA (2005)

    Google Scholar 

  37. L. Zhang, T.-S. Yao, Filtering junk mail with a maximum entropy model, in Proceeding of 20th International Conference on Computer Processing of Oriental Languages (ICCPOL03) (2003, pp. 446–453

    Google Scholar 

  38. L. Zhang, J. Zhu, T. Yao, An evaluation of statistical spam filtering techniques. ACM Trans. Asian Lang. Inf. Process. 3 (4), 243–269 (2004)

    Article  Google Scholar 

  39. C.C. Zou, D. Towsley, W. Gong, Email worm modeling and defense, in Proceedings of the 13th International Conference on Computer Communications and Networks (ICCCN) (IEEE, 2004), pp. 409–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siadati, H., Jafarikhah, S., Jakobsson, M. (2016). Traditional Countermeasures to Unwanted Email. In: Jakobsson, M. (eds) Understanding Social Engineering Based Scams. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6457-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6457-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6455-0

  • Online ISBN: 978-1-4939-6457-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics