Abstract
Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology—the “structure” of the network—is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment—which is an essentially solved problem—network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.
Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Williamson MP, Sutcliffe MJ (2010) Protein–protein interactions. Portland Press Limited, London
Jaenicke R, Helmreich E (2012) Protein-protein interactions, vol 23. Springer, Berlin
Davidson EH (2010) The regulatory genome: gene regulatory networks in development and evolution. Academic press, San Diego
Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nature reviews. Mol Cell Biol 9(10):770
Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93
Prescott DM (2012) Cell biology a comprehensive treatise V3: gene expression: the production of RNA’s, vol 3. Elsevier, Amsterdam
Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) Micrornas in human cancer. In: MicroRNA cancer regulation. Springer, Berlin, pp 1–20
Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2015) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44(D1):536–541
Tokar T, Pastrello C, Rossos AE, Abovsky M, Hauschild A-C, Tsay M, Lu R, Jurisica I (2017) mirdip 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res 46(D1):360–370
Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. In: Functional genomics. Springer, Berlin, pp 155–171
Milano M, Guzzi PH, Tymofieva O, Xu D, Hess C, Veltri P, Cannataro M (2017) An extensive assessment of network alignment algorithms for comparison of brain connectomes. BMC Bioinf 18(6):235
Junker BH, Schreiber F (2011) Analysis of biological networks, vol 2. Wiley, New York
Davis D, Yaveroğlu ÖN, Malod-Dognin N, Stojmirovic A, Pržulj N (2015) Topology-function conservation in protein–protein interaction networks. Bioinformatics 31(10):1632–1639. https://doi.org/10.1093/bioinformatics/btv026
Sporns O (2010) Networks of the brain. MIT Press, Cambridge
Kuchaiev O, Milenković T, Memišević V, Hayes W, Pržulj N (2010) Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 7(50):1341–1354. https://doi.org/10.1098/rsif.2010.0063
Van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, Howard HC, Cambon-Thomsen A, Knoppers BM, Meijers-Heijboer H et al (2013) Whole-genome sequencing in health care: recommendations of the European society of human genetics. Eur J Hum Genet 21(6):580
Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing. ACM, New York, pp 151–158
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York
Von Mering C, Krause R, Snel B, Cornell M et al (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887):399
Malod-Dognin N, Pržulj N (2015) L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics 31(13):2182–2189
Saraph V, Milenković T (2014) Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20):2931–2940
Mamano N, Hayes WB (2017) SANA: simulated annealing far outperforms many other search algorithms for biological network alignment. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx090
Hashemifar S, Xu J (2014) HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics 30(17):438–444. https://doi.org/10.1093/bioinformatics/btu450
Sun Y, Crawford J, Tang J, Milenković T (2015) Simultaneous optimization of both node and edge conservation in network alignment via WAVE. In: Pop M, Touzet H (eds) Algorithms in bioinformatics. Lecture notes in computer science, vol 9289. Springer, Berlin, pp 16–39. http://dx.doi.org/10.1007/978-3-662-48221-6_2
Patro R, Kingsford C (2012) Global network alignment using multiscale spectral signatures. Bioinformatics 28(23):3105–3114. https://doi.org/10.1093/bioinformatics/bts592. http://bioinformatics.oxfordjournals.org/content/28/23/3105.full.pdf+html
Vijayan V, Milenković T (2017) Aligning dynamic networks with dynawave. Bioinformatics 34(10):1795–1798
Faisal FE, Meng L, Crawford J, Milenković T (2015) The post-genomic era of biological network alignment. EURASIP J Bioinforma Syst Biol 2015(1):3
Pržulj N, Corneil DG, Jurisica I (2004) Modeling interactome: scale-free or geometric? Bioinformatics 20(18):3508–3515. https://doi.org/10.1093/bioinformatics/bth436. http://bioinformatics.oxfordjournals.org/content/20/18/3508.full.pdf+html
Milenković T, Pržulj N (2008) Uncovering biological network function via graphlet degree signatures. Cancer Inform 6:257–273. (Epub 2008 Apr 14)
Yaveroğlu N, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Stojmirovic RKA, Pržulj N (2014) Revealing the hidden language of complex networks. Sci Rep 4:4547
Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Kuchaiev O, Pržulj N (2011) Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27:1390–1396. https://doi.org/bioinformatics/btr127
The Gene Ontology Consortium (2008) The gene ontology project in 2008. Nucleic Acids Res 36(Suppl 1):440–444. https://doi.org/10.1093/nar/gkm883. http://nar.oxfordjournals.org/content/36/suppl_1/D440.full.pdf+html
Hayes WB, Mamano N (2017) Sana netgo: a combinatorial approach to using gene ontology (go) terms to score network alignments. arXiv preprint, arXiv:1704.01205
Vijayan V, Saraph V, Milenković T (2015) Magna++: maximizing accuracy in global network alignment via both node and edge conservation. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv161
Pržulj N, Wigle D, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348
Hočevar T, Demšar J (2014) A combinatorial approach to graphlet counting. Bioinformatics 30(4):559–565. https://doi.org/10.1093/bioinformatics/btt717
Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A et al (2017) The biogrid interaction database: 2017 update. Nucleic Acids Res 45(D1):369–379
Rossi RA, Zhou R, Ahmed NK (2017) Estimation of graphlet statistics. arXiv preprint, arXiv:1701.01772
Yang C, Lyu M, Li Y, Zhao Q, Xu Y (2018) SSRW: a scalable algorithm for estimating graphlet statistics based on random walk. In: International conference on database systems for advanced applications. Springer, Berlin, pp 272–288
Hasan A, Chung P-C, Hayes W (2017) Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8. PLoS ONE 12(8):0181570
Vidal M (2016) How much of the human protein interactome remains to be mapped? American Association for the Advancement of Science, Washington
Lesk A, Chothia C (1986) The response of protein structures to amino-acid sequence changes. Philos Trans R Soc Lond A 317(1540):345–356
Clark C, Kalita J (2014) A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics 30(16):2351–2359
Faisal FE, Meng L, Crawford J, Milenković T (2015) The post-genomic era of biological network alignment. EURASIP J Bioinforma Syst Biol 2015(1):1
Guzzi PH, Milenković T (2017) Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief Bioinform. https://doi.org/10.1093/bib/bbw132
Kanne DP, Hayes WB (2017) SANA: separating the search algorithm from the objective function in biological network alignment, Part 1: Search. arXiv preprint, arXiv:1709.01464
Larsen SJ, Alkærsig FG, Ditzel HJ, Jurisica I, Alcaraz N, Baumbach J (2016) A simulated annealing algorithm for maximum common edge subgraph detection in biological networks. In: Proceedings of the 2016 on genetic and evolutionary computation conference. ACM, New York, 341–348
Milenković T, Ng WL, Hayes W, Pržulj N (2010) Optimal network alignment with graphlet degree vectors. Cancer Informat 9:121–137. https://doi.org/10.4137/CIN.S4744
Mehlhorn K, Naher S (1999) LEDA: a platform for combinatorial and geometric computing. Cambridge University Press, Cambridge
Clark C, Kalita J (2015) A multiobjective memetic algorithm for PPI network alignment. Bioinformatics 31(12):1988–1998. https://doi.org/10.1093/bioinformatics/btv063. http://bioinformatics.oxfordjournals.org/content/31/12/1988.full.pdf+html
Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R (2008) Dominance-based multiobjective simulated annealing. IEEE Trans Evol Comput 12(3):323–342
Neyshabur B, Khadem A, Hashemifar S, Arab SS (2013) Netal: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics 29(13):1654–1662. https://doi.org/10.1093/bioinformatics/btt202. http://bioinformatics.oxfordjournals.org/content/29/13/1654.full.pdf+html
Chindelevitch L, Ma C-Y, Liao C-S, Berger B (2013) Optimizing a global alignment of protein interaction networks. Bioinformatics 29(21):2765–2773. https://doi.org/10.1093/bioinformatics/btt486. http://bioinformatics.oxfordjournals.org/content/29/21/2765.full.pdf+html
Aladağ AE, Erten C (2013) Spinal: scalable protein interaction network alignment. Bioinformatics 29(7):917–924. https://doi.org/10.1093/bioinformatics/btt071. http://bioinformatics.oxfordjournals.org/content/29/7/917.full.pdf+html
Crawford J, Milenković T (2015) Great: graphlet edge-based network alignment. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, Piscataway, pp 220–227
El-Kebir M, Heringa J, Klau GW (2011) Lagrangian relaxation applied to sparse global network alignment. In: IAPR international conference on pattern recognition in bioinformatics. Springer, Berlin, pp 225–236
Ibragimov R, Malek M, Guo J, Baumbach J (2013) Gedevo: an evolutionary graph edit distance algorithm for biological network alignment. In: OASIcs-OpenAccess series in informatics, vol 34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Malek M, Ibragimov R, Albrecht M, Baumbach J (2016) Cytogedevo: global alignment of biological networks with cytoscape. Bioinformatics 32(8):1259–1261
Alkan F, Erten C (2014) Beams: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks. Bioinformatics 30(4):531–539
Phan HT, Sternberg MJ (2012) Pinalog: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics 28(9):1239–1245
Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Hayes, W.B. (2020). An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_18
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9873-9_18
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9872-2
Online ISBN: 978-1-4939-9873-9
eBook Packages: Springer Protocols