Abstract
Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pierce, TH, Hohne, BA (eds) (1986) Artificial intelligence applications in chemistry. ACS Symposium Series 306, American Chemical Society, Washington, DC.
Goldberg, DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA.
Holland, JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.
Bounds, DG (1987). New optimization methods from physics and biology. Nature, 329, 215–219.
Zupan J, Gasteiger J (1991) Neural networks-a new method for solving chemical problems or just a passing phase? Anal Chim Acta 248:1–30.
Zupan J, Gasteiger J (1993) Neural networks for chemists—an introduction. VCH, Weinheim.
Cartwright HM (1993). Applications of artificial intelligence in chemistry. Oxford University Press, Oxford.
Cartwright HM, Long RA (1993) Simultaneous optimization of flowshop sequencing and topology using genetic algorithms. Ind Eng Chem Res 32:2706–2713.
Lahiri S, Stillman MJ (2000) Knowledge transfer: human experts to expert systems. In: Cartwright HM (ed.) Intelligent data analysis in science. Oxford University Press, Oxford, pp. 19–43.
Sharda R, Delen D (2006) Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications 30:243–254.
Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold, New York.
Sumpter BG, Getino C, Noid DW (1994) Theory and applications of neural computing in chemical science. Ann Rev Phys Chem 45:439–481.
Peterson K (2000). Artificial neural networks and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-VCH, New York, pp. 53–140.
Eldred DV, Weikel CL, Jurs P, Kaiser KLE (1999) Prediction of fathead minnow acute toxicity or organic compounds from molecular structure. Chem Res Toxico 12:670–678.
Pantakar SJ, Jurs PC (2000) Prediction of IC50 values for ACAT inhibitors from molecular structure. J Chem Inf Comput Sci 40:706–723.
Lucic B, Trinajstic N J (1999) Multivariate regression outperforms several robust architectures of neural networks in QSAR modelling. J Chem Inf Comput Sci 39:121–132.
So S-S, Karplus M J (1999) A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J Comput-Aided Mol Des 13:243–258.
Beck B, Glen R, Clark TJ (1996) The inhibition of α-chymotrypsin predicted using theoretically derived molecular properties. J Mol Graph 14:130–135.
Goodacre R, Kell DB, Bianchi G (1992) Neural networks and olive oil. Nature 359:594.
Rezzi S, Axelson DE, Heberger K, Reniero F, Mariani C, Guillou C (2005) Classification of olive oils using high throughput flow 1H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks. Anal Chim Acta 552:13–24.
O'Farrell M, Lewis E, Flanagan C, Lyons W, Jackman N (2005) Comparison of k-NN and neural network methods in the classification of spectral data from an optical fibre-based sensor system used for quality control in the food industry. Sensors and Actuators B 111–112:254–362.
Ozmen A, Tekce F, Ebeolgu MA, Tasaltin C, Ozturk ZZ (2006) Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensor and Accuators B 115:450–454.
Dutta R, Morgan D, Baker N, Gardner JW, Hines EL (2005) Identification of Staphylococcus aureus infections in hospital environment: electronic nose based approach. Sensors and Actuators B 109, 355–362.
Hodgins D, Simmonds D (1995) The electronic NOSE and its application to the manufacture of foods. J. Automated Chemistry 17:179–185.
Auge J, Hauptmann P, Hartmann J, Rosler S, Lucklum R (1995) Versatile microcontrolled gas sensor array system using the quartz microbalance principle and pattern recognition methods. Sensors and Actuators B 26:181–186.
Xing W-L, He X-W (1997) Crown ether-coated piezoelectric crystal sensor array for detection of organic vapour mixtures using several chemometric methods. Analyst 122:587–592.
Lubal P, Koprivova H, Sedo O, Havel J, Lis S, But S (2006) Simultaneous determination of molybdenum (VI) and tungsten (VI) and its application in elemental analysis of polyoxometalates. Talanta 69:800–806.
Devillers J (2000) Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variable. Toxicol Methods 10:69–79.
Cartwright HM (2002) Investigation of structure-biodegradability relationships in polychlorinated biphenyls using self-organising maps. Neural Comput & Applic 11:30–36.
Zitko V (1991) Prediction of the biodegradability of organic chemicals by an artificial neural network. Chemosphere 23:305–312.
Grover M, Singh B, Bakshi M, Singh S (2000) Quantitative structure-property relationships in pharmaceutical research-part 1. PSTT 3:28–35.
Viswanadhan VN, Ghose AK, Revankar GR, Robins R (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172.
Stud M (1993) Neural networks in medicinal chemistry:. encoding graphic structures and their prediction capability. In: VII congreso de la sociedad espanola de quimica terapeutica, September 28–30, Salamanca, Spain.
Caruana R, Schaffer JD (1988) Representation and hidden bias: gray vs. binary coding for genetic algorithms. In: Proc. Vth int. conf. on machine learning, Morgan Kaufmann, San Mateo, CA, pp. 132–161.
Cherqaoui D, Esseffar M, Zakarya D, Mesbah A, Villemin D (1998) Structure-selectivity relationships of MAO inhibitors using neural networks. ACH-Models Chem 135:79–92.
Burden FR (1996) Using artificial neural networks to predict biological activity from simple molecular structural considerations. Quant Struc-Act Relat 15:7–11.
Halberstam NM, Baskin II, Palyulin VA, Zefirov NS (2003) Neural networks as a method for elucidating structure-property relationships for organic compounds. Uspekhi Khimii 72:706–727.
Jolliffe IT (1986) Principal components analysis. Springer-Verlag, New York.
Everitt BS (1993) Cluster analysis. Edward Arnold, London.
Goodacre R (2000) Applications of artificial neural networks to the analysis of multivariate data. In: Cartwright HM (ed.) Intelligent data analysis in science,. Oxford University Press, Oxford, pp. 123–152.
Jacobsson SP (1994) Feature extraction of polysaccharides by low-dimensional internal representation neural networks and infrared spectroscopy. Anal Chim Acta 291:19–27.
Palmes PP, Usui S (2005) Robustness, evolvability and optimality of evolutionary neural networks. BioSystems 82:168–188.
Fritzke B (1995) Growing grid-a self-organizing network with constant neighborhood range and adaption strength. Neural Processing Letters 2:9–13.
Blackmore J, Miikkulainen R (1995) Visualizing high-dimensional structure with the incremental grid growing network. In: Proc. XIIth internat. conf. on machine learning. Morgan Kaufmann, San Francisco, pp. 55–63.
Martinetz M, Schulten KJ (1991) A neural gas network learns topologies. In: Kohonen KMT, Simula O, Kangas J. (eds) Artificial neural networks. North Holland, Amsterdam, pp. 397–402.
Walker AJ, Cross SS, Harrison RF (1999) Visualisation of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. The Lancet 354:1518–1521.
Wong JWH, Cartwright HM (2005) Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets. J Biomed Inform 38:322–330.
Wu Z, Yen G (2003) A SOM projection technique with the growing structure for visualising high-dimensional data. Int J Neural Systems 13:353–365.
Fonseca AM, Biscaya JL, Aires-de-Sousa J, Lobo AM (2006) Geographical classification of crude oils by Kohonen self-organizing maps. Anal Chim Acta 556:374–382.
Cartwright HM (2006) Neural network analysis of the degradation of oil spills. (In preparation).
Zhang X, Li H, Hou A, Havel J (2006) Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks. Chemometr Intell Lab Syst 82:165–175.
Tetko IV, Luik AI, Poda GI (1993) Applications of neural networks in structure-activity relationships of a small number of molecules. J Med Chem 36:811–814.
Havel J, Pena-Mendez EM, Rojas-Hernandez A, Doucet J-P, Panaye A (1998) Neural networks for optimization of high-performance capillary zone electrophoresis methods: a new method using a combination of experimental design and artificial neural networks. JChromatogr A 793:317–329.
Yannis LL (2000) Artificial neural networks in liquid chromatography: efficient and improved quantitative structure-retention relationship models. J Chromatogr A 904:119–129.
Polaskova P, Bocaz G, Li H, Havel J (2002) Evaluation of calibration data in capillary electrophoresis using artificial neural networks to increase precision of analysis. J Chromatogr A 979:59–67.
Guiochon G, Shirazi SG, Katti AM (1994) Fundamentals of preparative and nonlinear chromatography. Academic Press, Boston.
Guiochon GJ (2002) Preparative liquid chromatography. J Chromatogr A 965:129–161.
Craig LC (1944) Identification of small amounts of organic compounds by distribution studies. II. Separation by counter-current distribution. J Biol Chem 155:519–534.
Shan Y, Seidel-Morgenstern A (2005) Optimization of gradient elution conditions in multicomponent preparative liquid chromatography. J Chromatography A 1093:47–58.
Santana RC, Do PT, Santikunaporn M, Alvarez WE, Taylor JD, Sughrue EL, Resasco DE (2006) Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels. Fuel 85:643–656.
Billingsley D (1995) Octane prediction of gasoline blends using neural nets. Proc NPRA Comput Conf.
Basu B, Kapur GS, Sarpal AS, Meusinger R (2003) A neural network approach to the prediction of cetane number of diesel fuels using nuclear magnetic resonance (NMR) spectroscopy. Energy and Fuels 6:1570–1575.
Pasadakis N, Sourligas S, Foteinopoulos C (2006) Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks. Fuel 85:1131–1137.
Ochoa C, Chana A, Stud M (2001) Applications of Neural Networks in the Medicinal Chemistry Field. Curr Med Chem-Central Nervous System Agents 1:247–256.
Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727.
Kovesdi I, Dominguez-Rodriguez MF, Orfi L, Naray-Szabo G, Papp JG, Matyus P (1999) Application of neural networks in structure-activity relationships. Med Res Rev 19:249–269.
Manallack DT, Livingstone DJ (1999) Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem 34:195–208.
Molnar L, Kereru GM, Papp A, Lorincz Z, Ambrus G, Darvas F (2005) A neural network based classification scheme for cytotoxicity predictions: validation on 30,000 compounds. Bioorg & Med Chem Letts 16:1037–1039.
Balakin KV, Savchuk NP, Tetko IV (2006) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241.
Hernandez-Caraballo EA, Marco-Parra LM (2003) Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis. Spectrochimica Acta Part B 58:2205–2213.
Goodacre R, Neal MJ, Kell DB, Greenham LW, Noble WC, Harvey RG (1994) Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolate from dogs. J Appl Bacteriology 76:124–134.
Nilsson T, Bassani, MR, Larsen TO, Montanarella L (1996) Classification of species of the genus Penicillium by Curie Point pyrolysis mass spectrometry followed by multivariate analysis and artificial neural networks. J Mass Spectrom 31:1422–1428.
Fernandez-Pachon MS, Villano D, Troncoso AM, Garcia-Parilla MC (2005) Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal Chim Acta 563:101–108.
Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behaviour of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749–760.
Heijnene CGM, Haenen GRMM, Van Acker FAA, Van Der Vijgh W, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 15:3–6.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Humana Press, a part of Springer Science + Business Media, LLC
About this protocol
Cite this protocol
Cartwright, H.M. (2008). Artificial Neural Networks in Biology and Chemistry—The Evolution of a New Analytical Tool. In: Livingstone, D.J. (eds) Artificial Neural Networks. Methods in Molecular Biology™, vol 458. Humana Press. https://doi.org/10.1007/978-1-60327-101-1_1
Download citation
DOI: https://doi.org/10.1007/978-1-60327-101-1_1
Publisher Name: Humana Press
Print ISBN: 978-1-58829-718-1
Online ISBN: 978-1-60327-101-1
eBook Packages: Springer Protocols