Skip to main content

Computational Resources for the Prediction and Analysis of Native Disorder in Proteins

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

Proteomics attempts to characterise the gene products expressed in a cell or tissue via a range of biophysical techniques including crystallography and NMR and, more relevantly to this volume, chromatography and mass spectrometry. It is becoming increasingly clear that the native states of segments of many of the cellular proteins are not stable, folded structures, and much of the proteome is in an unfolded, disordered state. These proteins and their disordered segments have functionally interesting properties and provide novel challenges for the biophysical techniques that are used to study them. This chapter focuses on computational approaches to predicting such regions and analyzing the functions linked to them, and has implications for protein scientists who wish to study such properties as molecular recognition and post-translational modifications. We also discuss resources where the results of predictions have been collated, making them publicly available to the wider biological community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskowski, R.A., Watson, J.D. and Thornton, J.M. (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33, W89-W93, 10.1093/nar/gki414.

  2. Pazos, F. and Sternberg, M.J.E. (2004) Automated prediction of protein function and detection of functional sites from structure. Proc Natl Acad Sci U S A. 101, 14754-14759, 10.1073/pnas.0404569101.

  3. Wright, P.E. and Dyson, H.J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol. Biol. 293, 321-331.

    Article  CAS  PubMed  Google Scholar 

  4. Gerstein, M. and Echols, N. (2004) Exploring the range of protein flexibility, from a structural proteomics perspective. Curr Opin. Chem. Biol. 8, 14-19.

    Article  CAS  PubMed  Google Scholar 

  5. Dunker, A.K. and Obradovic, Z. (2001) The protein trinity-linking function and disorder. Nature Biotechnol. 19, 805-806.

    Article  CAS  Google Scholar 

  6. Iakoucheva, L.M., Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G., Obradovic, Z. and Dunker, A.K. (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037.

    Article  CAS  PubMed  Google Scholar 

  7. Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z. and Dunker, A.K. (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol. Biol. 323, 573-584.

    Article  CAS  PubMed  Google Scholar 

  8. Donne, D.G., Viles, J.H., Groth, D., Mehl- horn, I., James, T.L., Cohen, F.E., Prusiner, S.B., Wright, P.E. and Dyson, H.J. (1997) Structure of the recombinant full-length hamster prion protein PrP (29-231): The N terminus is highly flexible National Acad Sciences.

    Google Scholar 

  9. DuBay, K.F., Pawar, A.P., Chiti, F., Zurdo, J., Dobson, C.M. and Vendruscolo, M. (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol. Biol., 341, 1317-1326.

    Article  CAS  PubMed  Google Scholar 

  10. Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J.E. and Dunker, A.K. (1997) Identifying disordered regions in proteins from amino acid sequence. In Neural Networks, 1997., International Conference on. Vol. 1.

    Google Scholar 

  11. Li, X., Romero, P., Rani, M., Dunker, A.K. and Obradovic, Z. (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Informatics Series, 30-40.

    Google Scholar 

  12. Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J. and Dunker, A.K. (2001) Sequence complexity of disordered protein. Proteins-New York-, 42, 38-48.

    CAS  Google Scholar 

  13. Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L.M., Cortese, M.S., Lawson, J.D., Brown, C.J. and Sikes, J.G. (2005) DisProt: a database of protein disorder Oxford Univ Press.

    Google Scholar 

  14. Rost, B. (1996) PHD: predicting 1D protein structure byprofile based neural networks. Meth enzymol, 266, 525-539.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J., Tan, H. and Rost, B. (2002) Loopy proteins appear conserved in evolution. J Mol Biol, 322, 53-64.

    Article  CAS  PubMed  Google Scholar 

  16. Bracken, C. (2001) NMR spin relaxation methods for characterization of disorder and folding in proteins. J Mol. Graph. Model. 19, 3-12.

    Article  CAS  PubMed  Google Scholar 

  17. Vucetic, S., Brown, C.J., Dunker, A.K. and Obradovic, Z. (2003) Flavors of protein disorder. Proteins Struct. Funct. Genet. 52, 573-584.

    Article  CAS  Google Scholar 

  18. Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C. and Brown, C.J. (2000) Intrinsic protein disorder in complete genomes. Genome Informatics Series, 161-171.

    Google Scholar 

  19. Uversky, V.N., Gillespie, J.R. and Fink, A.L. (2000) Why are“natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet, 41, 415-427.

    Article  CAS  PubMed  Google Scholar 

  20. Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T., Rydberg, E.H., Man, O., Beckmann, J.S., Silman, I. and Sussman, J.L. (2005) FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded Oxford Univ Press.

    Google Scholar 

  21. Liu, J. and Rost, B. (2003) NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res, 31, 3833-5.

    Article  CAS  PubMed  Google Scholar 

  22. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J. and Russell, R.B. (2003) Protein disorder prediction implications for structural proteomics. Structure, 11, 1453-1459.

    Article  CAS  PubMed  Google Scholar 

  23. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. and Jones, D.T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol, 337, 635-645.

    Article  CAS  PubMed  Google Scholar 

  24. Vapnik, V.N. (2000) The Nature of Statistical Learning Theory Springer.

    Google Scholar 

  25. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol. Biol. 292, 195-202.

    Article  CAS  PubMed  Google Scholar 

  26. Melamud, E. and Moult, J. (2003) Evaluation of disorder predictions in CASP5. Proteins-New York-, 53, 561-565.

    CAS  Google Scholar 

  27. Bordoli, L., Kiefer, F. and Schwede, T. (2007) Assessment of disorder predictions in CASP7. Proteins, 69, 129-36.

    Article  CAS  PubMed  Google Scholar 

  28. Dosztányi, Z., Csizmók, V., Tompa, P. and Simon, I. (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol. Biol. 347, 827-839.

    Article  PubMed  Google Scholar 

  29. Ferron, F., Longhi, S., Canard, B. and Karlin, D. (2006) A practical overview of protein disorder prediction methods. Proteins, 65, 1-14.

    Article  CAS  PubMed  Google Scholar 

  30. Ishida, T. and Kinoshita, K. (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics, 24, 1344-8, 10.1093/bioinformatics/btn195.

  31. Lieutaud, P., Canard, B. and Longhi, S. (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics, 9 Suppl 2, S25, 10.1186/1471-2164-9-S2-S25.

  32. Dyson, H.J. and Wright, P.E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208.

    Article  CAS  PubMed  Google Scholar 

  33. Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield,C.J., Dunker,A.K., Uversky,V.N. and Obradovic,Z. (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res, 6, 1882-1898.

    Google Scholar 

  34. Uversky, V.N., Radivojac, P., Iakoucheva, L.M., Obradovic, Z. and Dunker, A.K. (2007) Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Meth Mol Biol-Clifton Then Totowa-, 408, 69.

    CAS  Google Scholar 

  35. Haynes, C., Oldfield, C.J., Ji,F., Klitgord, N., Cusick, M.E., Radivojac, P., Uversky, V.N., Vidal, M. and Iakoucheva,L.M. (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol, 2, e100.

    Article  PubMed  Google Scholar 

  36. Jones, D.T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics, 23, 538.

    Article  CAS  PubMed  Google Scholar 

  37. Jones, D.T. and Swindells, M.B. (2002) Getting the most from PSI-BLAST. Trends in Biochemical Sciences, 27, 161-164.

    Article  CAS  PubMed  Google Scholar 

  38. Siepen, J.A., Belhajjame, K., Selley, J.N., Embury, S.M., Paton, N.W., Goble, C.A., Oliver, S.G., Stevens, R., Zamboulis, L., Martin, N. Hubbard S.J (2008) ISPIDER Central: an integrated database web-server for proteomics. Nucleic Acids Res 36, W485-W490.

    Google Scholar 

  39. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4673.

    Article  CAS  PubMed  Google Scholar 

  40. Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F. and Jones, D.T. (2004) The DISOPRED server for the prediction of protein disorder Oxford Univ Press.

    Google Scholar 

  41. Hegyi, H. and Gerstein, M. (1999) The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol. Biol. 288, 147-164.

    Article  CAS  PubMed  Google Scholar 

  42. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. and Lansbury Jr, P.T. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709-13715.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K. and Uversky, V.N. (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry, 45, 10448-10460.

    Article  CAS  PubMed  Google Scholar 

  44. Superti-Furga, A., Steinmann, B., Ramirez, F. and Byers, P.H. (1989) Molecular defects of type III procollagen in Ehlers-Danlos syndrome type IV. Hum. Genet. 82, 104-108.

    Article  CAS  PubMed  Google Scholar 

  45. Barker, D.F., Hostikka, S.L., Zhou, J., Chow, L.T., Oliphant,A.R., Gerken,S.C., Gregory, M.C., Skolnick, M.H., Atkin, C.L. and Tryggvason, K. (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 248, 1224-1227.

    Article  CAS  PubMed  Google Scholar 

  46. Bogin, O., Kvansakul, M., Rom,E., Singer, J., Yayon, A. and Hohenester, E. (2002) Insight into Schmid Metaphyseal Chondrodysplasia from the Crystal Structure of the Collagen X NC1 Domain Trimer. Structure, 10, 165-173.

    Article  CAS  PubMed  Google Scholar 

  47. Kainulainen, K., Karttunen, L., Puhakka, L., Sakai, L. and Peltonen, L. (1994) Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet. 6, 64-69.

    Article  CAS  PubMed  Google Scholar 

  48. Putnam, E.A., Zhang, H., Ramirez, F. and Milewicz, D.M. (1995) Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nature Genet. 11, 456-458.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Y., Zhao, J., Tu, P., Jiang, W. and Zhu, X. (2007) A novel missense mutation in COL7A1 in a Chinese pedigree with epidermolysis bullosa pruriginosa. J Dermatol Sci. 46, 211-213.

    Article  CAS  PubMed  Google Scholar 

  50. Romero, P.R., Zaidi, S., Fang, Y.Y., Uversky, V.N., Radivojac, P., Oldfield, C.J., Cortese, M.S., Sickmeier, M., LeGall, T. and Obradovic, Z. (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl. Acad Sci. 103, 8390-8395.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pentony, M.M., Ward, J., Jones, D.T. (2010). Computational Resources for the Prediction and Analysis of Native Disorder in Proteins. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics