Skip to main content

In Vivo Quantitative Proteome Profiling: Planning and Evaluation of SILAC Experiments

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Mass spectrometry-based quantitative proteomics can identify and quantify thousands of proteins in complex biological samples. Improved instrumentation, quantification strategies and data analysis tools now enable protein analysis on a genome-wide scale. Particularly, quantification based on stable isotope labeling with amino acids (SILAC) has emerged as a robust, reliable and simple method for accurate large-scale protein quantification. The spectrum of applications ranges from bacteria and eukaryotic cell culture systems to multicellular organisms. Here, we provide a step-by-step protocol on how to plan and perform large-scale quantitative proteome analysis using SILAC, from sample preparation to final data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Article  PubMed  CAS  Google Scholar 

  2. Vermeulen M, Selbach M (2009) Quantitative proteomics: a tool to assess cell differentiation. Curr Opin Cell Biol 21:761–766

    Article  PubMed  CAS  Google Scholar 

  3. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  4. Schoenheimer R, Rittenberg D (1938) The application of isotopes to the study of intermediary metabolism. Science 87:221–226

    Article  PubMed  CAS  Google Scholar 

  5. Blagoev B, Ong SE, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    Article  PubMed  CAS  Google Scholar 

  6. Kratchmarova I, Blagoev B, Haack-Sorensen M et al (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    Article  PubMed  CAS  Google Scholar 

  7. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  8. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 34:353–364

    Article  Google Scholar 

  9. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  PubMed  CAS  Google Scholar 

  10. Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385

    Article  PubMed  CAS  Google Scholar 

  11. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    Article  PubMed  CAS  Google Scholar 

  12. Kirchner M, Thierfelder N, Stoeckius M et al (2010) (17th to 20th of June) Quantitative proteome and transcriptome analysis of C. elegans and C. briggsae development. In: EMBL conference, C. elegans: development and gene expression, Heidelberg, Germany

    Google Scholar 

  13. Looso M, Borchardt T, Krueger M et al (2010) Advanced identification of proteins in uncharacterized proteomes by pulsed in vivo SILAC. Mol Cell Proteomics 9:1157–1166

    Article  PubMed  CAS  Google Scholar 

  14. Doherty MK, Whitehead C, McCormack H et al (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5:522–533

    Article  PubMed  CAS  Google Scholar 

  15. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  16. Hanke S, Besir H, Oesterhelt D et al (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 7:1118–1130

    Article  PubMed  CAS  Google Scholar 

  17. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  PubMed  CAS  Google Scholar 

  18. Ishihama Y, Sato T, Tabata T et al (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23:617–621

    Article  PubMed  CAS  Google Scholar 

  19. Rigbolt KT, Blagoev B (2010) Proteome-wide quantitation by SILAC. Methods Mol Biol 658:187–204

    Article  PubMed  CAS  Google Scholar 

  20. Lossner C, Warnken U, Pscherer A et al (2011) Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem 412:123–125

    Article  PubMed  Google Scholar 

  21. Park SK, Liao L, Kim JY et al (2009) A computational approach to correct arginine-to-proline conversion in quantitative proteomics. Nat Methods 6:184–185

    Article  PubMed  CAS  Google Scholar 

  22. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  PubMed  CAS  Google Scholar 

  23. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using Stage Tips. Nat Protoc 2:1896–1906

    Article  PubMed  CAS  Google Scholar 

  24. Ishihama Y, Rappsilber J, Andersen JS et al (2002) Microcolumns with self-assembled particle frits for proteomics. J Chromatogr A 979:233–239

    Article  PubMed  CAS  Google Scholar 

  25. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123

    Article  PubMed  CAS  Google Scholar 

  26. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide proteinquantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  27. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  PubMed  CAS  Google Scholar 

  28. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  PubMed  CAS  Google Scholar 

  29. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  PubMed  CAS  Google Scholar 

  30. Molina H, Yang Y, Ruch T et al (2009) Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res 8:48–58

    Article  PubMed  CAS  Google Scholar 

  31. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  PubMed  CAS  Google Scholar 

  32. Bonaldi T, Straub T, Cox J et al (2008) Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. Mol Cell 31:762–772

    Article  PubMed  CAS  Google Scholar 

  33. Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678

    Article  PubMed  Google Scholar 

  34. Bendall SC, Hughes C, Stewart MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597

    Article  PubMed  CAS  Google Scholar 

  35. Prokhorova TA, Rigbolt KT, Johansen PT et al (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 8:959–970

    Article  PubMed  CAS  Google Scholar 

  36. Graumann J, Hubner NC, Kim JB et al (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7:672–683

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Selbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kirchner, M., Selbach, M. (2012). In Vivo Quantitative Proteome Profiling: Planning and Evaluation of SILAC Experiments. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics