Skip to main content

Quantitative Analysis of S-Nitrosylated Proteins

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Protein S-nitrosylation is the covalent binding of nitric oxide to specific cysteine residues in proteins. This modification influences a large number of cellular events and signaling processes. As this process is finely regulated in vivo, the level of nitrosylation changes in response to different stimuli. Since its introduction, the biotin-switch technique (BST) is the most used indirect method for the study of S-nitrosylation both in vivo and in vitro and its coupling with mass spectrometry-based proteomics lead to the identification of the S-nitroso proteome in different organisms. However, this method does not give any information about the posttranslational modification level on the same residue in different biological conditions. Quantitative proteomic methods can assess the relative change in S-nitrosylation for hundreds sites in a single experiment. Stable isotope labeling by aminoacids in cell culture (SILAC) is one of the most used and accurate quantitative techniques in MS-based proteomics. Here we present a SILAC-based method for the quantification of endogenously S-nitrosylated proteins in RAW 264.7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaston BM, Carver J, Doctor A, Palmer LA (2003) S-nitrosylation signaling in cell biology. Mol Interv 3:253–263

    Article  PubMed  CAS  Google Scholar 

  2. Oess S, Icking A, Fulton D et al (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396:401–409

    Article  PubMed  CAS  Google Scholar 

  3. Torta F, Elviri L, Bachi A (2010) Direct and indirect detection methods for the analysis of S-nitrosylated peptides and proteins. Methods Enzymol 473:265–280

    Article  PubMed  CAS  Google Scholar 

  4. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 86:pl1

    Google Scholar 

  5. Camerini S, Polci ML, Restuccia U et al (2007) A novel approach to identify proteins modified by nitric oxide: the HIS-TAG switch method. J Proteome Res 6:3224–3231

    Article  PubMed  CAS  Google Scholar 

  6. Torta F, Usuelli V, Malgaroli A, Bachi A (2008) Proteomic analysis of protein S-nitrosylation. Proteomics 8:4484–4494

    Article  PubMed  CAS  Google Scholar 

  7. Hortelano S, Genaro AM, Bosca L (1992) Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. Antagonism with the induction elicited by lipopolysaccharide. J Biol Chem 267:24937–24940

    PubMed  CAS  Google Scholar 

  8. Mitchell JA, Kohlhaas KL, Matsumoto T et al (1992) Induction of NADPH-dependent diaphorase and nitric oxide synthase activity in aortic smooth muscle and cultured macrophages. Mol Pharmacol 41:1163–1168

    PubMed  CAS  Google Scholar 

  9. Kunz D, Muhl H, Walker G, Pfeilschifter J (1994) Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci USA 91:5387–5391

    Article  PubMed  CAS  Google Scholar 

  10. Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    Article  PubMed  CAS  Google Scholar 

  11. Tello D, Tarin C, Ahicart P et al (2009) A “fluorescence switch” technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 9:5359–5370

    Article  PubMed  CAS  Google Scholar 

  12. Hao G, Derakhshan B, Shi L et al (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci USA 103:1012–1017

    Article  PubMed  CAS  Google Scholar 

  13. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  PubMed  CAS  Google Scholar 

  14. Benhar M, Thompson JW, Moseley MA, Stamler JS (2010) Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49:6963–6969

    Article  PubMed  CAS  Google Scholar 

  15. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  PubMed  CAS  Google Scholar 

  16. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  17. Gao C, Guo H, Wei J et al (2005) Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages. Nitric Oxide 12:121–126

    Article  PubMed  CAS  Google Scholar 

  18. Paige JS, Xu G, Stancevic B, Jaffrey SR (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15:1307–1316

    Article  PubMed  CAS  Google Scholar 

  19. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  PubMed  CAS  Google Scholar 

  20. Tiss A, Smith C, Camuzeaux S et al (2007) Serum peptide profiling using MALDI mass spectrometry: avoiding the pitfalls of coated magnetic beads using well-established ZipTip technology. Proteomics 7(suppl 1):77–89

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AB is partially supported by Cariplo Foundation (Project NoBEL-GUARD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Bachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Torta, F., Bachi, A. (2012). Quantitative Analysis of S-Nitrosylated Proteins. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics