Skip to main content

Dependent Record Types for Dynamic Context Representation

  • Conference paper
Research and Development in Intelligent Systems XXIII (SGAI 2006)

Abstract

The context paradigm emerges from different areas of Artificial Intelligence (AI). However, while significative formalizations have been proposed, contexts are either mapped on independent micro-theories or considered as different concurrent viewpoints with mappings between contexts to export/import knowledge. These logical formalisms focus on the semantic level and do not take into account dynamic low-level information such as those available from sensors via physical variables. This information is a key element of contexts in pervasive computing environments. In this paper, we introduce a formal framework where the knowledge representation of context bridges the gap between semantic high-level and low-level knowledge. The logical reasoning based on intuitionistic type theory and the Curry-Howard isomorphism is able to incorporate expert knowledge as well as technical resources such as computing variable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betarte G.,: Type checking dependent (record) types and subtyping. Journal of Functional and Logic Programming (2000) 10 (2) 137–166

    Article  MATH  MathSciNet  Google Scholar 

  2. Boldini, P.: Formalizing Context in Intuitionistic Type theory. Fundamenta Informaticae (2000) 42 1–23

    MathSciNet  Google Scholar 

  3. Bove A., Capretta, V.: Nested General Recursion and Partiality in Type Theory TPHOL (2001) R.J. Boulton and P.B. Jackson eds. LNCS 2152 121135 Springer

    Google Scholar 

  4. Brézillon P., Abu-Hakima S.: Using Knowledge in its Context: Report on the IJCAF93 Workshop. AI Magazine (1995) 16(1) 87–91

    Google Scholar 

  5. Buvac S., Buvac V., Mason I.A.: Metamathematics of Contexts. Fundamentae Informaticae 23(3) (1995) 412–419

    MathSciNet  Google Scholar 

  6. Buvac S.: Quantificational logic of context. Procs. of the 13th National Conference on Artificial Intelligence (1996)

    Google Scholar 

  7. Cederquist J.: A Pointfree Approach to Constructive Analysis in Type Theory. PhD thesis Chalmers Univ. Sweden (1997)

    Google Scholar 

  8. Bouquet P., Serafini L., Brézillon P., Benerecetti M., Castellani F.: Modeling and Using Context, Second International and Interdisciplinary Conference, CONTEXT’99 Trento Italy (1999) Springer LNCS 1688

    Google Scholar 

  9. Cooper R.: Mixing Situation Theory and Type Theory to Formalize Information States in Dialogue Exchanges, in Procs of TWLT 13/Twendial’ 98: Formal Semantics and Pragmatics of Dialogue (1998)

    Google Scholar 

  10. Coquand C, Coquand T.: Structured type theory. Workshop on Logical Frameworks and Met a-languages (1999)

    Google Scholar 

  11. Ginzburg J.: Abstraction and Ontology: Questions as Propositional Abstracts in Type Theory with Records. Journal of Log. Comput. 15(2) (2005) 113–130

    Article  MATH  MathSciNet  Google Scholar 

  12. Giunchiglia F.: Contextual Reasoning. Istituto per la Ricerca Scientifica e Technologica (1992) 9211–20

    Google Scholar 

  13. Ghidini C, Giunchiglia F.: Local Models Semantics, or Contextual Reasoning = Locality + Compatibility. Artificial Intelligence (2001) 127(2) 221–259

    Article  MATH  MathSciNet  Google Scholar 

  14. Guha R.V.: Contexts: a Formalization and some Applications. Stanford Computer Science Departement STAN-CS-91-1399 (1991)

    Google Scholar 

  15. Kopylov A.: Dependent Intersection: A New Way of Defining Records in Type Theory, in Procs. of the 18th Annual IEEE Symposium on Logic in Computer Science (2003) 86–95

    Google Scholar 

  16. Martin-Lof, P.: Constructive Mathematics and Computer Programming. Logic, Methodology and Philosophy of Sciences (1982) 6 153–175

    MathSciNet  Google Scholar 

  17. McCarthy J.: Notes on Formalizing Context. Procs. of the 13th Int. Joint Conf. on Artificial Intelligence (1993) 555–560

    Google Scholar 

  18. Montague R.: Pragmatics and intensional logic, Synthèse 22 (1970) 68–94

    Article  MATH  Google Scholar 

  19. Ozturk P., Aamodt A.: A context model for knowledge-intensive casebased reasoning International Journal of Human Computer Studies (1998) 48 331–355

    Article  Google Scholar 

  20. Paulson L.C.: The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning (1989) 5 363–397

    Article  MATH  MathSciNet  Google Scholar 

  21. Ranta, A.: Constructing Possible Worlds. Theoria 57(1/2) (1991) 77–99

    MATH  MathSciNet  Google Scholar 

  22. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism. Journal of Functional Programming (2004) 14(2) 145–189

    Article  MATH  MathSciNet  Google Scholar 

  23. Drabble B., et al.: Reports on the AAAI 1999 Workshop Program. AI Magazine 21(1) (2000) 95–100

    Google Scholar 

  24. Strang T., Linnhoff-Popien C: A Context Modeling Survey. Sixth International Conference on Ubiquitous Computing (UbiComp2004) (2004) 34–41

    Google Scholar 

  25. Terziyan V.Y., Puuronen S.: Formal Aspects of Context. P. Bonzon, M. Cavalcanti and R. Nossum eds. Kluwer Academic (2000)

    Google Scholar 

  26. Thomason R.H.: Representing and Reasoning with Context. Procs. of the International Conference on Artificial Intelligence and Symbolic Computation (1998) 1476 LNCS 29-41 Springer

    Google Scholar 

  27. Thomason R.H.: Type theoretic foundations for context, part 1: Contexts as complex typetheoretic objects. Modeling and Using Contexts Paolo Bouquet et al. eds., (1999) 352–374 Springer

    Google Scholar 

  28. Villadsen, J.: Multi-dimensional Type Theory: Rules, Categories, and Combinators for Syntax and Semantics. Int. Workshop on Constraint Solving and Language Processing (2004) H. Christiansen et al. eds. 160–165

    Google Scholar 

  29. OWL Web Ontology Language — Semantics and Abstract Syntax. Recommendation 10 (2004) http://www.w3.org/TR/owl-semantics/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this paper

Cite this paper

Dapoigny, R., Barlatier, P. (2007). Dependent Record Types for Dynamic Context Representation. In: Bramer, M., Coenen, F., Tuson, A. (eds) Research and Development in Intelligent Systems XXIII. SGAI 2006. Springer, London. https://doi.org/10.1007/978-1-84628-663-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-663-6_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-662-9

  • Online ISBN: 978-1-84628-663-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics