Skip to main content

Use of Data Mining Techniques to Model Crime Scene Investigator Performance

  • Conference paper
Applications and Innovations in Intelligent Systems XIV (SGAI 2006)

Abstract

This paper examines how data mining techniques can assist the monitoring of Crime Scene Investigator performance. The findings show that Investigators can be placed in one of four groups according to their ability to recover DNA and fingerprints from crime scenes. They also show that their ability to predict which crime scenes will yield the best opportunity of recovering forensic samples has no correlation to their actual ability to recover those samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adderley, R. & Musgrove, P.B. (2002). Modus operandi modelling of group offending: a data mining case study. The International Journal of Police Science and Management 5 (4) (pp. 165–176)

    Google Scholar 

  2. Adderley, R. (2002). The use of data mining techniques in active crime fighting, Proceedings: International conference on computer, communication and control technologies and the 9th international conference on information systems analysis and synthesis, 1001, 11 July–1 August 1001. (Orlando): CCCT and ISAS, (pp. 156–161).

    Google Scholar 

  3. Adriaans, P., & Zantinge, D. (1996). Data Mining, New York, Addison-Wesley.

    Google Scholar 

  4. Association of Chief Police Officers & Forensic Science Service. (1996) Using Forensic Science Effectively. London: ACPO.

    Google Scholar 

  5. Bishop, C. M., (1995). Neural Networks for Pattern Recognition, Oxford University Press, Oxford.

    Google Scholar 

  6. Brachman, R., J., Anand, T. (1996). ‘The Process of Knowledge Discovery in Databases’, In: Advances in Knowledge Discovery and Data Mining, Usarna M. Fayyad, et al., American Association for Artificial Intelligence, AAAI Press, California.

    Google Scholar 

  7. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinhertz, T., Shearer, C., Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide, USA: SPSS Inc. CRISPWP-0800.

    Google Scholar 

  8. Chen, H., Chung, W., Xu, J.J., Qin, G. W. Y., Chau, M. (1004). Crime data mining: a general framework and some examples. COMPUTER, 17(4) (pp. 50–56).

    Google Scholar 

  9. Computing (1996). Mine, all Mine, Computing 10th October 1996.

    Google Scholar 

  10. Duda, R.O., Hart, P.E. (1971). Pattern Analysis and Scene Analysis, New York; John Wiley.

    Google Scholar 

  11. Duda, R. O., Hart, P. E., Stork., D. G. (2000). Pattern Classification. John Wiley & Sons Inc, 1000.

    Google Scholar 

  12. Giraud-Carrier, C., Povel, O. (2001). Characterising data mining software. Journal of Intelligent Data Analysis. 7(1) (pp. 181–191).

    Google Scholar 

  13. Hartigan, J. A., Wong, M. A., (1979). A k-means clustering algorithm. Appl. Stat. 18, (pp. 100–108).

    Article  Google Scholar 

  14. Haughton, E., (1991). Digging for Gold. Computing, 10th January 1994 (pp. 10–11).

    Google Scholar 

  15. Her Majesty’s Inspectorate of Constabulary. (2000). Under the Microscope. London: ACPO.

    Google Scholar 

  16. Her Majesty’s Inspectorate of Constabulary. (2002). Under the Microscope Refocused. London: ACPO.

    Google Scholar 

  17. Home Office (2004). National Policing Plan 1005–1008, Home Office, UK.

    Google Scholar 

  18. House, J. C. (1996). Towards a Practical Application of Offender Profiling: The RNC’s Criminal Suspect Prioritization System, Investigative Psychology Conference, Liverpool University.

    Google Scholar 

  19. Langley, P., Sage, S. (1994). Induction of selective Bayesian classifiers, Proceedings 10 th Conference on Uncertainty in Artificial Intelligence, Seattle, WA; Morgan Kaufmann (pp. 119–406).

    Google Scholar 

  20. McCue, C., Stone, E. S., Gooch, T. P. (2001). Data mining and value-added analysis: more science, less fiction. Submitted to FBI Law Enforcement Bulletin.

    Google Scholar 

  21. Meltzer, M. (2004). Using data mining on the road to successful BI, Part I, Data Mining Direct Special Report [on line], 11st September 2004. Available from: http://www.dmreview.comleditoriaVnewsletter_ more.cfm?n1=bireport. [Accessed 1nd May 2005].

    Google Scholar 

  22. Mena, J. (2002). Investigative data mining for security and criminal detection. Burlingto MA, Elsevier Science.

    Google Scholar 

  23. Police Standards Unit. (2005). Forensic Performance Monitors, London: Home Office.

    Google Scholar 

  24. Quinlan J. R., (1996). Bagging, boosting, and C4.5 Proceedings 11 th National Conference on Artificial Intelligence, August 4–8. Portland USA.

    Google Scholar 

  25. SAS (2000), Data Mining Home Page, 〈http://www.sas.com!software/data_mining.〉. (accessed on 5th June 2000)

    Google Scholar 

  26. Sherman, R. (2005). Data integration advisor: set the stage with data preparation, DM Review, February 1005.

    Google Scholar 

  27. Swingler, K. (1996). Applying Neuralblnetworks; A Practical Guide. San Francisco: Morgan Kaufman

    Google Scholar 

  28. Thomsen, E. (1998). Presentation: Very Large Data Bases/Data Mining Summit, Beverly Hills, California.

    Google Scholar 

  29. Tilley N, Ford A. (1996). Forensic science and criminal investigation. Crime Detection and Prevention Paper 71, London: Home Office.

    Google Scholar 

  30. Williams, S. R. (2004). The Management Of Crime Scene Examination In Relation To The Investigation Of Burglary And Vehicle Crime. Home Office: London.

    Google Scholar 

  31. Wikipedia (2006). Definition of unsupervised learning. http://en.wikipedia.org/wiki/Unsupervised_learning accessed 15th May 1006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this paper

Cite this paper

Adderley, R., Townsley, M., Bond, J. (2007). Use of Data Mining Techniques to Model Crime Scene Investigator Performance. In: Ellis, R., Allen, T., Tuson, A. (eds) Applications and Innovations in Intelligent Systems XIV. SGAI 2006. Springer, London. https://doi.org/10.1007/978-1-84628-666-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-666-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-665-0

  • Online ISBN: 978-1-84628-666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics