Skip to main content

Comparative studies of Statistical and Neural Networks Models for Short and Long Term Load Forecasting: a Case Study in the Brazilian Amazon Power Suppliers

  • Conference paper
Applications and Innovations in Intelligent Systems XV (SGAI 2007)

abstract

One of the most desired aspects for power suppliers is the acquisition/sell of energy in a future time. This paper presents a study for power supply forecasting of the residential class, based on time series methods and neural networks, considering short and long term forecast, both of great importance for power suppliers in order to define the future power consumption of a given region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adya, M. & Collopy, F.. How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation, In: Journal of Forecasting, vol. 17, pp. 481-495, 1998.

    Article  Google Scholar 

  2. ANEEL. Atlas de energia elétrica do Brasil, Agěncia Nacional de Energia Elétrica, Brasília, DF, 2003.

    Google Scholar 

  3. Dillon, W. R. & Goldstein, M.. Multivariate Analysis - Methods and Applications, John Wiley & Sons, 1984.

    Google Scholar 

  4. Douglas, A.P., Breipohl, A.M., Lee, F.N. & Adapa, R. The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, vol. 13, 1998.

    Google Scholar 

  5. Hair, J. F. JR., Aanderson, R. E., Tatham, R. L. & Black, W. C. Multivariate data analysis. Prentice-Hall, 1998.

    Google Scholar 

  6. Hippert, H., Pedreira, C. 8 Souza, R. Neural Networks for Short-Term Load Forecasting: A Review and Evaluation, In: IEEE Transactions on Power Systems, vol. 16, no. 1, pp. 44-55, 2001.

    Article  Google Scholar 

  7. Pindyck, R. S. & Rubinfeld, D. L. Econometric Models and Economic Forecasts. Irwin/McGraw-Hill, 1998.

    Google Scholar 

  8. Rice, J. A. Mathematical Statistics and Data Analysis. 2nd Edition, Duxbury Press, 1995.

    Google Scholar 

  9. Rocha, C., Santana, Á. L., Francěs, C. R., Rěgo, L., Costa, J., Gato, V. & Tupiassu, A. Decision Support in Power Systems Based on Load Forecasting Models and Influence Analysis of Climatic and Socio-Economic Factors. SPIE, v. 6383, 2006.

    Google Scholar 

  10. Russel, S. & Norvig, P. Artificial Intelligence - A Modern Approach. Prentice Hall, 2003.

    Google Scholar 

  11. Senjyu, T., Takara, H., Uezato, K. & Funabashi, T. One-hour-ahead Load Forecasting Using Neural Network. IEEE Transactions on Power Systems, vol. 17, no. 1, 2002.

    Google Scholar 

  12. Mor. J. J., The levenberg-marquardt algorithm: Im-plementation and theory. In Proceedings of Springer-Verlagin Numerical Analysis ( Lecture Notes in Ma-thematics ), 1977, pp. 105-116.

    Google Scholar 

  13. Haykin, S. Neural Networks: a comprehensive Foundation, Prentice Hall, 2nd Ed. 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this paper

Cite this paper

Conde, G.A., De Santana, Á.L., FrancÊs, C.L., Rocha, C.A., Rego, L., Gato, V. (2008). Comparative studies of Statistical and Neural Networks Models for Short and Long Term Load Forecasting: a Case Study in the Brazilian Amazon Power Suppliers. In: Ellis, R., Allen, T., Petridis, M. (eds) Applications and Innovations in Intelligent Systems XV. SGAI 2007. Springer, London. https://doi.org/10.1007/978-1-84800-086-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-086-5_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-085-8

  • Online ISBN: 978-1-84800-086-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics