Skip to main content

Visualization and Grouping of Graph Patterns in Molecular Databases

  • Conference paper
Research and Development in Intelligent Systems XXIV (SGAI 2007)

Abstract

Mining subgraphs is an area of research where we have a given set of graphs, and we search for (connected) subgraphs contained in these graphs. In this paper we focus on the analysis of graph patterns where the graphs are molecules and the subgraphs are patterns. In the analysis of fragments one is interested in the molecules in which the patterns occur. This data can be very extensive and in this paper we introduce a technique of making it better available using visualization. The user does not have to browse all the occurrences in search of patterns occurring in the same molecules; instead the user can directly see which subgraphs are of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. Bruin, J.S. de, Cocx, T.K., Kosters, W.A., Laros, J.F.J. and Kok, J.N.: Data Mining Approaches to Criminal Career Analysis, in Proc. 6th IEEE International Conference on Data Mining (ICDM 2006), pp. 171–177.

    Google Scholar 

  2. Gao, H., Williams, C., Labute, P. and Bajorath, J.W.: Binary Quantitative Structure-Activity Relationship (QSAR) Analysis of Estrogen, Journal of Chemical Information and Computer Sciences, 39 (1999), pp. 164–168.

    Article  Google Scholar 

  3. Gedeck, P. and Willett, P.: Visual and Computational Analysis of Structure-Activity Relationships in High-Throughput Screening Data, Current Opinion in Chemical Biology 5 (2001), pp. 389–395.

    Article  Google Scholar 

  4. Graaf, E.H. de, Kok, J.N. and Kosters, W.A.: Improving the Exploration of Graph Mining Results with Clustering, in Proc. 4th IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI2007), to appear. Research and Development in Intelligent Systems XXIV 279

    Google Scholar 

  5. Hanke, J., Beckmann, G., Bork, P. and Reich, J.G.: Self-Organizing Hierarchic Networks for Pattern Recognition in Protein Sequence, Protein Science Journal 5 (1996), pp. 72–82.

    Google Scholar 

  6. Izrailev, S. and Agrafiotis, D.K.: A Method for Quantifying and Visualizing the Diversity of QSAR Models, Journal of Molecular Graphics and Modelling 22 (2004), pp. 275–284

    Article  Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps, Volume 30 of Springer Series in Information Science, Springer, second edition, 1997.

    Google Scholar 

  8. Kosters, W.A. and Wezel, M.C. van: Competitive Neural Networks for Customer Choice Models, in E-Commerce and Intelligent Methods, Volume 105 of Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer, 2002, pp. 41–60.

    Google Scholar 

  9. Lameijer, E.W., Kok, J.N., Bäck, T. and IJzerman, A.P.: Mining a Chemical Database for Fragment Co-Occurrence: Discovery of “Chemical Clich’es”Journal of Chemical Information and Modelling 46 (2006), pp. 553–562.

    Google Scholar 

  10. Lameijer, E.W., Tromp, R.A., Spanjersberg, R.F., Brussee, J. and IJzerman, A.P.: Designing Active Template Molecules by Combining Computational De Novo Design and Human Chemist’s ExpertiseJournal of Medicinal Chemistry 50 (2007), pp. 1925–1932.

    Google Scholar 

  11. Mahony, S., Hendrix, D., Smith, T.J. and Golden, A.: Self-Organizing Maps of Position Weight Matrices for Motif Discovery in Biological Sequences, Artificial Intelligence Review Journal 24 (2005), pp. 397–413.

    Article  Google Scholar 

  12. National Cancer Institute (NCI), DTP/2D and 3D structural information, http : //cactus.nci.nih.gov/ncidb2/download.html.

    Google Scholar 

  13. Rhodes, N., Willet, P., Dunbar, J. and Humblet, C.: Bit-String Methods for Selective Compound Acquisition, Journal of Chemical Information and Computer Sciences 40 (2000), pp. 210–214.

    Google Scholar 

  14. Roberts, G., Myatt, G.J., Johnson, W.P., Cross, K.P. and Blower Jr, P.E.: LeadScope: Software for Exploring Large Sets of Screening Data, Journal of Chemical Information and Computer Sciences 40 (2000), pp.1302–1314.

    Google Scholar 

  15. Willet, P., Barnad, J.M. and Downs, G.M.J.: Chemical Similarity Searching, Journal of Chemical Information and Computer Sciences 38 (1999), pp. 983–996.

    Google Scholar 

  16. Xu, J., Zhang, Q. and Shih, C.-K.: V-Cluster Algorithm: A New Algorithm for Clustering Molecules Based Upon Numeric Data, Molecular Diversity 10 (2006), pp. 463–478. 280 Max Bramer, Frans Coenen and Miltos Petridis (Eds)

    Google Scholar 

  17. Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Mining, in Proc. 2002 IEEE International Conference on Data Mining (ICDM 2002), pp. 721–724.

    Google Scholar 

  18. Zaki, M., Parthasarathy, S., Ogihara, M. and Li, W.: New Algorithms for Fast Discovery of Association Rules, in Proc. 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997), pp. 283–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this paper

Cite this paper

de Graaf, E.H., Kosters, W.A., Kok, J.N., Kazius, J. (2008). Visualization and Grouping of Graph Patterns in Molecular Databases. In: Bramer, M., Coenen, F., Petridis, M. (eds) Research and Development in Intelligent Systems XXIV. SGAI 2007. Springer, London. https://doi.org/10.1007/978-1-84800-094-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-094-0_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-093-3

  • Online ISBN: 978-1-84800-094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics