Skip to main content

Protein Interaction Network Based Prediction of Domain-Domain and Domain-Peptide Interactions

  • Chapter
Protein-protein Interactions and Networks

Part of the book series: Computational Biology ((COBO,volume 9))

Abstract

Protein-protein interaction networks provide important clues about cell function. However, the picture offered by protein interaction alone is incomplete, because techniques for determining interactions at genome scale lack details as to how they are mediated. Stable protein interactions are thought to be largely mediated by interactions between protein domains while transient interactions occur often between small globular domains and short protein peptides, the so called linear motifs. Recently a number of computational methods to predict interactions between two domains and between a domain and a (possibly modified) peptide have been proposed. In this chapter we review representative computational methods focusing on those that use high throughput protein interaction networks to uncover domain-domain and domain-peptide interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Apic, G., J. Gough, et al. (2001). “An insight into domain combinations.” Bioinformatics 17 Suppl 1: S83–9.

    Google Scholar 

  • Bock, J. R. and D. A. Gough (2001). “Predicting protein–protein interactions from primary structure.” Bioinformatics 17(5): 455–60.

    Article  Google Scholar 

  • Brenner, S. E., C. Chothia, et al. (1997). “Population statistics of protein structures: lessons from structural classifications.” Curr Opin Struct Biol 7(3): 369–76.

    Article  Google Scholar 

  • Cormen, T. H., C. H. Leiserson, et al. (2001). Introduction to Algorithms, MIT Press.

    Google Scholar 

  • Davey, N. E., D. C. Shields, et al. (2006). “SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent.” Nucleic Acids Res 34(12): 3546–54.

    Article  Google Scholar 

  • Deng, M., S. Mehta, et al. (2002). “Inferring domain-domain interactions from protein-protein interactions.” Genome Res 12(10): 1540–8.

    Article  Google Scholar 

  • Ferraro, E., A. Via, et al. (2006). “A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity.” Bioinformatics 22(19): 2333–9.

    Article  Google Scholar 

  • Finn, R. D., J. Mistry, et al. (2006). “Pfam: clans, web tools and services.” Nucleic Acids Res 34(Database issue): D247–51.

    Article  Google Scholar 

  • Gerstein, M. (1998). “Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census.” Proteins 33(4): 518–34.

    Article  Google Scholar 

  • Gomez, S. M. and A. Rzhetsky (2002). “Towards the prediction of complete protein–protein interaction networks.” Pac Symp Biocomput: 413–24.

    Google Scholar 

  • Guimarães, K. S., R. Jothi, et al. (2006). “Predicting domain-domain interactions using a parsimony approach.” Genome Biol 7(11): R104.

    Article  Google Scholar 

  • Guimarães, K. S. and T. M. Przytycka (2008). “Interrogating domain-domain interactions with parsimony based approaches.” BMC Bioinformatics 9:171

    Article  Google Scholar 

  • Harris, M. A., J. Clark, et al. (2004). “The Gene Ontology (GO) database and informatics resource.” Nucleic Acids Res 32(Database issue): D258–61.

    Google Scholar 

  • Hjerrild, M., A. Stensballe, et al. (2004). “Identification of Phosphorylation Sites in Protein Kinase A Substrates Using Artificial Neural Networks and Mass Spectrometry.” J Proteome Res 3(3): 426–433.

    Article  Google Scholar 

  • Hulo, N., A. Bairoch, et al. (2006). “The PROSITE database.” Nucleic Acids Res 34(Database issue): D227–30.

    Article  Google Scholar 

  • Itzhaki, Z., E. Akiva, et al. (2006). “Evolutionary conservation of domain-domain interactions.” Genome Biol 7(12): R125.

    Article  Google Scholar 

  • Jothi, R., P. F. Cherukuri, et al. (2006). “Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions.” J Mol Biol 362(4): 861–75.

    Article  Google Scholar 

  • Kanehisa, M., S. Goto, et al. (2006). “From genomics to chemical genomics: new developments in KEGG.” Nucleic Acids Res 34(Database issue): D354–57.

    Article  Google Scholar 

  • Kann, M. G., R. Jothi, et al. (2007). “Predicting protein domain interactions from coevolution of conserved regions.” Proteins 67(4): 811–20.

    Article  Google Scholar 

  • Krebs, E. G. and J. A. Beavo (1979). “Phosphorylation-dephosphorylation of enzymes.” Annu Rev Biochem 48: 923–59.

    Article  Google Scholar 

  • Lander, E. S., L. M. Linton, et al. (2001). “Initial sequencing and analysis of the human genome.” Nature 409(6822): 860–921.

    Article  Google Scholar 

  • Lee, H., M. Deng, et al. (2006). “An integrated approach to the prediction of domain-domain interactions.” BMC Bioinformatics 7: 269.

    Article  Google Scholar 

  • Lehrach, W. P., D. Husmeier, et al. (2006). “A regularized discriminative model for the prediction of protein-peptide interactions.” Bioinformatics 22(5): 532–40.

    Article  Google Scholar 

  • Linding, R., L. J. Jensen, et al. (2007). “Systematic discovery of in vivo phosphorylation networks.” Cell 129(7): 1415–26.

    Article  Google Scholar 

  • Marcotte, E. M., M. Pellegrini, et al. (1999). “Detecting protein function and protein-protein interactions from genome sequences.” Science 285(5428): 751–53.

    Article  Google Scholar 

  • Mestres, J. (2005). “Representativity of target families in the Protein Data Bank: impact for family-directed structure-based drug discovery.” Drug Discov Today 10(23–24): 1629–37.

    Article  Google Scholar 

  • Neduva, V., R. Linding, et al. (2005). “Systematic discovery of new recognition peptides mediating protein interaction networks.” PLoS Biol 3(12): e405.

    Article  Google Scholar 

  • Ng, S. K., Z. Zhang, et al. (2003a). “Integrative approach for computationally inferring protein domain interactions.” Bioinformatics 19(8): 923–9.

    Google Scholar 

  • Ng, S. K., Z. Zhang, et al. (2003b). “InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes.” Nucleic Acids Res 31(1): 251–4.

    Google Scholar 

  • Nguyen, T. P. and T. B. Ho (2006). “Discovering signal transduction networks using signaling domain-domain interactions.” Genome Inform 17(2): 35–45.

    Google Scholar 

  • Nye, T. M., C. Berzuini, et al. (2005). “Statistical analysis of domains in interacting protein pairs.” Bioinformatics 21(7): 993–1001.

    Article  Google Scholar 

  • Obenauer, J. C., L. C. Cantley, et al. (2003). “Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs.” Nucleic Acids Res 31(13): 3635–41.

    Article  Google Scholar 

  • Pagel, P., P. Wong, et al. (2004). “A domain interaction map based on phylogenetic profiling.” J Mol Biol 344(5): 1331–46.

    Article  Google Scholar 

  • Pawson, T. and P. Nash (2003). “Assembly of cell regulatory systems through protein interaction domains.” Science 300(5618): 445–52.

    Article  Google Scholar 

  • Peng K., Z. Obradovic, et al. (2004). “Exploring bias in the Protein Data Bank using contrast classifiers.” Pac Symp Biocomput: 435–446.

    Google Scholar 

  • Peri, S., J. D. Navarro, et al. (2003). “Development of human protein reference database as an initial platform for approaching systems biology in humans.” Genome Res 13(10): 2363–71.

    Article  Google Scholar 

  • Ptacek, J., G. Devgan, et al. (2005). “Global analysis of protein phosphorylation in yeast.” Nature 438(7068): 679–84.

    Article  Google Scholar 

  • Puntervoll, P., R. Linding, et al. (2003). “ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins.” Nucl Acids Res. 31(13): 3625–3630.

    Article  Google Scholar 

  • Reiss, D. J. and B. Schwikowski (2004). “Predicting protein-peptide interactions via a network-based motif sampler.” Bioinformatics 20 Suppl 1: i274–82.

    Article  Google Scholar 

  • Rigoutsos, I. and A. Floratos (1998). “Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm.” Bioinformatics 14(1): 55–67.

    Article  Google Scholar 

  • Riley, R., C. Lee, et al. (2005). “Inferring protein domain interactions from databases of interacting proteins.” Genome Biol 6(10): R89.

    Article  Google Scholar 

  • Shmulevich, I., E. R. Dougherty, et al. (2002). “Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks.” Bioinformatics 18(2): 261–74.

    Article  Google Scholar 

  • Shoemaker, B. A., A. R. Panchenko, et al. (2006). “Finding biologically relevant protein domain interactions: conserved binding mode analysis.” Protein Sci 15(2): 352–61.

    Article  Google Scholar 

  • Singhal, M. and H. Resat (2007). “A domain-based approach to predict protein-protein interactions.” BMC Bioinformatics 8: 199.

    Article  Google Scholar 

  • Sprinzak, E. and H. Margalit (2001). “Correlated sequence-signatures as markers of protein-protein interaction.” J Mol Biol 311(4): 681–92.

    Article  Google Scholar 

  • Stein, A., R. B. Russell, et al. (2005). “3did: interacting protein domains of known three-dimensional structure.” Nucleic Acids Res 33(Database issue): D413–7.

    Article  Google Scholar 

  • Suthram, S., T. Shlomi, et al. (2006). “A direct comparison of protein interaction confidence assignment schemes.” BMC Bioinformatics 7: 360.

    Article  Google Scholar 

  • Toro, I., S. Thore, et al. (2001). “RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex.” Embo J 20(9): 2293–303.

    Article  Google Scholar 

  • von Mering, C., L. J. Jensen, et al. (2007). “STRING 7 – Recent developments in the integration and prediction of protein interactions.” Nucleic Acids Research 35: D358–D362.

    Article  Google Scholar 

  • Wang, H., E. Segal, et al. (2007). “InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale.” Genome Biol 8(9): R192.

    Article  Google Scholar 

  • Wang, H., E. Segal, et al. (2007b). “InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale.” Genome Biol 8(9): R192.

    Google Scholar 

  • Wojcik, J. and V. Schachter (2001). “Protein-protein interaction map inference using interacting domain profile pairs.” Bioinformatics 17 Suppl 1: S296–305.

    Google Scholar 

  • Xie, L. and P. E. Bourne (2005). “Functional coverage of the human genome by existing structures, structural genomics targets, and homology models.” PLoS Comput Biol 1(3): e31.

    Article  Google Scholar 

  • Zhang, L. V., S. L. Wong, et al. (2004). “Predicting co-complexed protein pairs using genomic and proteomic data integration.” BMC Bioinformatics 5: 38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia S. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Guimarães, K.S., Przytycka, T.M. (2008). Protein Interaction Network Based Prediction of Domain-Domain and Domain-Peptide Interactions. In: Panchenko, A., Przytycka, T. (eds) Protein-protein Interactions and Networks. Computational Biology, vol 9. Springer, London. https://doi.org/10.1007/978-1-84800-125-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-125-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-124-4

  • Online ISBN: 978-1-84800-125-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics