Skip to main content

On the Computation of Optimal Transport Maps Using Gradient Flows and Multiresolution Analysis

  • Conference paper

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 371))

Abstract

The optimal mass transport methodology has numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Further, it leads to some beautiful mathematical problems. Motivated by certain issues in image registration, visual tracking and medical image visualization, we outline in this note a straightforward gradient descent approach for computing the optimal L 2 optimal transport mapping which may be easily implemented using a multiresolution scheme. We discuss the well-posedness of our scheme, and indicate how the optimal transport map may be computed on the sphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On area preserving maps of minimal distortion. In: Djaferis, T., Schick, I. (eds.) System Theory: Modeling, Analysis, and Control, pp. 275–287. Kluwer, Holland (1999)

    Google Scholar 

  2. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: Laplace-Beltrami operator and brain surface flattening. IEEE Trans. on Medical Imaging 18, 700–711 (1999)

    Article  Google Scholar 

  3. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Analysis 35, 61–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 64, 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  6. Dacorogna, B., Moser, J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs (1976)

    MATH  Google Scholar 

  8. Feldman, M., McCann, R.J.: Monge’s transport problem on a Riemannian manifold. Trans. Amer. Math. Soc. 354, 1667–1697 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. Journal Computer Vision 60, 225–240 (2004)

    Article  Google Scholar 

  10. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  11. McCann, R.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120, 286–294 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  13. Niethammer, M., Vela, P., Tannenbaum, A.: Geometric observers for dynamically evolving curves. IEEE PAMI (submitted, 2007)

    Google Scholar 

  14. Rachev, S., Rüschendorf, L.: Mass Transportation Problems and Probability and Its Applications, vol. I, II. Springer, New York (1998)

    Google Scholar 

  15. Schröder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. In: Proceedings SIGGRAPH 1995 Computer Graphics, ACM Siggraph, pp. 161–172 (1995)

    Google Scholar 

  16. Schröder, P., Sweldens, W.: Spherical wavelets: Texture processing. In: Hanrahan, P., Purgathofer, W. (eds.) Rendering Techniques 1995, pp. 252–263. Springer, New York (1995)

    Google Scholar 

  17. Sweldens, W.: The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions. In: Laine, A.F., Unser, M. (eds.) Proc. SPIE, Wavelet Applications in Signal and Image Processing III, pp. 68–79 (1995)

    Google Scholar 

  18. Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dominitz, A., Angenent, S., Tannenbaum, A. (2008). On the Computation of Optimal Transport Maps Using Gradient Flows and Multiresolution Analysis. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, vol 371. Springer, London. https://doi.org/10.1007/978-1-84800-155-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-155-8_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-154-1

  • Online ISBN: 978-1-84800-155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics