
Chapter 14
Emotion Recognition Based on Multimodal
Information

Zhihong Zeng, Maja Pantic, and Thomas S. Huang

14.1 Introduction

Here is a conversation between an interviewer and a subject occurring in an Adult
Attachment Interview (Roisman, Tsai, & Chiang, 2004). AUs are facial action units
defined in Ekman, Friesen, and Hager (2002).

The interviewer asked: “Now, let you choose five adjective words to describe
your childhood relationship with your mother when you were about five years old,
or as far back as you remember.”

The subject kept smiling (lip corner raiser AU12) when listening. After the inter-
viewer finished the question, the subject looked around and lowered down her head
(AU 54) and eyes (AU 64). Then she lowered and drew together the eyebrows (AU4)
so that severe vertical wrinkles and skin bunching between the eyebrows appeared.
Then her left lip raise[d] (Left AU10), and finger scratched chin.

After about 50 second silence, the subject raise her head (AU53) and brow
(AU1+AU2), and asked with a smile (AU12): “Should I . . . give what I have now?”

The interviewer response with smiling (AU12): “I guess, those will be when you
were five years old. Can you remember?”

The subject answered with finger touching chin: “Yeap. Ok. Happy (smile, AU
6+AU12), content, dependent, (silence, then lower her voice) what is next (silent,
AU4+left AU 10), honest, (silent, AU 4), innocent.”
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This is an exemplar interaction occurring in a natural human interaction setting
where the verbal and nonverbal behavior involves the coordination of multiple
modalities (facial expression, speech (linguistic and paralinguistic information),
gesture, gaze, head movement, and context). Generally, humans consciously or un-
consciously use these modalities to express and interpret emotional behavior in such
a way that the interaction can go smoothly. Each of these modalities has a unique
contribution in the exchange of information of human behavior, as described in
the other chapters. However, unimodal analysis is not sensitive enough to capture
all the emotion content of the interactions, nor reliable enough to understand the
meaning of the emotion behavior.

Take the above conversation as an instance. If we just listen to what the partici-
pants said, we will miss much behavior during the silence. On the other hand, if we
just watch the facial actions without the audio channel, we may not reliably inter-
pret the smiles (AU12, AU6+AU12), frowns (AU4), head raise (AU53), brow raise
(AU2), and unilateral upper lip raise (left AU10). The subject’s complex behavior
(e.g., greeting, thinking, uncertainty, and induced emotion) must be understood by
integrating physical features from multiple modalities (facial expression, speech,
gesture, gaze, and head movement) with context. For example, the first smile of
the subject may just mean that she was following what the interviewer was say-
ing whereas the last smile of the subject may mean joy induced by her childhood
experience recall.

Many psychological studies have theoretically and empirically demonstrated the
importance of integration of information from multiple modalities to yield a coher-
ent representation and inference of emotions (e.g., Ambady & Rosenthal, 1992;
Scherer, 1999; Russell, Bachorowski, & Fernandez-Dols, 2003; Yoshimoto,
Shapiro, O’Brian, & Gottman, 2005). Emotion research requires the study of
the configuration of these emotion-related modalities, and multimodal integration
is a key to understanding how humans efficiently and reliably express and perceive
human emotional behavior.

With the development of science and technology, more and more researchers
from the engineering and psychological communities have explored the possibil-
ity of using computers to automatically analyze human emotion displays. We have
witnessed significant progress in the field of machine analysis of human emotion
behavior, especially facial expression and vocal expression (Picard, 1997; Cowie
et al.., 2001; Pantic & Rothkrantz, 2003; Pentland, 2005; Cohn, 2006).

It has also been shown by several studies that integrating the information from
multiple modalities leads to improvement of machine recognition performance of
emotion over unimodal approaches (Song, Bu, Chen, & Li, 2004; Fragopanagos &
Taylor, 2005; Caridakis, Malatesta, Kessous, Amir, Paouzaiou, & Karpouzis, 2006;
Zeng et al., 2007b; Zeng, Tu, Pianfetti, & Huang, 2008b).

The improved reliability of multimodal approaches can be explained from an
engineering perspective. Current techniques for different modalities have different
limitations; for instance, detection and tracking of facial expressions are sensitive to
head pose, clutter, and variations in lighting conditions, speech processing is sen-
sitive to auditory noise, and detection of physiological responses is influenced by
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intrusion of wearable devices. Multimodal fusion provides a possibility to make
use of complementary information from multiple modalities and reduce the current
technical limitations in automatic emotion analysis.

Based on the fact that change in emotion plays an essential role in our daily
life, especially in social interaction, some researchers have explored the possibil-
ity of enabling the computer to recognize human emotion behavior, with the goal
of building a natural and friendly human–computer interaction (HCI) environment.
Examples of affect-sensitive, multimodal HCI systems include the system of Lisetti
and Nasoz (2002), which combines facial expression and physiological signals to
recognize the user’s emotion such as fear and anger and then to adapt an ani-
mated interface agent to mirror the user’s emotion; the multimodal system of Duric
et al., (2002), which applies a model of embodied cognition that can be seen as a de-
tailed mapping between the user’s emotional states and the types of interface adap-
tations; the proactive HCI tool of Maat and Pantic (2006) capable of learning and
analyzing the user’s context-dependent behavioral patterns from multisensory data
and of adapting the interaction accordingly, the automated Learning Companion of
Kapoor, Burleson, and Picard (2007) that combines information from cameras, a
sensing chair and mouse, wireless skin sensor, and task state to detect frustration in
order to predict when the user needs help; and the multimodal computer-aided learn-
ing system at Beckman Institute UIUC 1 illustrated in Figure 14.1 where the com-
puter avatar offers an appropriate tutoring strategy based on the information of user’s

Fig. 14.1 A prototype of multimodal computer-aided learning system.

1 http://itr.beckman.uiuc.edu.
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facial expression, eye movement, keywords, eye movement, and task state. These
systems represent initial efforts towards the future socially aware, multimodal HCI.

This chapter is intended to provide an overview of the research on automatic
human emotion recognition based on the information from multiple modalities
(audio, visual, and physiological responses). Multimodal fusion includes audio-
visual fusion, visual-physiological fusion, multi-audio-cue fusion (linguistic and
paralinguistic information), multi-visual-cue fusion (facial expression, gaze, head
movement, and body movement), and audio-visual-physiological fusion. Although
the combination of all modalities (i.e., audio-visual-physiological fusion) is ex-
pected to be the best choice for emotion analysis (Yoshimoto, Shapiro, O’Brian,
& Gottman, 2005), there is no reported effort toward inclusion of all the modalities
into an automatic emotion-sensitive computing system.

The chapter is organized as follows. Section 14.2 provides a brief description
of emotion, emotion expression, and perception, from a psychological perspective.
Section 14.3 provides a detailed review of the related studies, including multimedia
emotion databases, existing automatic multimodal emotion recognition methods,
and recent authors’ efforts toward this research direction. Section 14.4 discusses
some of the challenges that researchers face in this field. Finally we draw conclu-
sions from this chapter.

14.2 Human Emotion Expression and Perception

Although the researchers in the emotion-related research communities (psychol-
ogy, linguistics, neuroscience, anthropology, and other related disciplines) have not
reached consensus on the answer to the question, “What is emotion,” a widespread
accepted description of emotion consists of multiple components (cognitive ap-
praisal, action tendencies, motor expression, physiological symptoms, subjective
feeling) that represent the different aspects of emotion (Scherer, 1999; Cohn, 2006).
All of these components concurrently work and function relative to each other dur-
ing an emotion episode.

Unfortunately, the states of cognitive appraisal, action tendencies, and subjective
feeling are not observable, so the emotional states can only be inferred through
observed emotion expression, detected physiological symptoms, and self-report if
possible. Human judgment of emotion is mainly based on emotion expression (facial
expression, speech, gesture, body movement, and gaze). If two individuals are close
enough or touch each other, they may perceive some physiological symptoms, such
as heartbeat and sweat on the skin, which provide an additional perspective to infer
emotion reaction.

The emotion inference from observable behavior and physiological symptoms is
definitely an ill-posed problem, so the context of emotion induction acts as a con-
straint to reduce the ambiguity of emotion judgment. The context can be any infor-
mation to characterize the situation in which an emotion behavior occurs, including
who the emotion expresser and receiver are, what the expresser is doing, when and
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Fig. 14.2 A emotion emission diagram from expresser to receiver.

where the emotion behavior occurs, and so on. Figure 14.2 illustrates a diagram
of multimodal emotion expression and perception in which the audio and visual
sensors of the receiver (i.e., human eyes and ears) capture the emotion expressions
(facial expression, speech, body movement, and gaze), and physiological sensors
(i.e., skin) track the physiological responses, and a fusion and pattern recognition
module (brain) integrates all related information of audio and visual expressions
and physiological responses with the context and makes the judgment of emotion.

In the last three decades, we have witnessed significant progress toward the un-
derstanding of emotion behavior and psychological responses, especially based on
single modalities of nonverbal behaviors (facial and vocal expressions; Ekman &
Friesen, 1975, Ekman, 1982, Ekman & Rosenberg, 2005; Russell, Bachorowski,
& Fernandez-Dols, 2003; Harrigan, Rosenthal, & Scherer, 2005). Some promising
manual coding systems have been proposed, such as the Facial Action Unit Sys-
tem (Ekman, Friesen, & Hager, 2002) for facial expression and the Feeltrace sys-
tem (Cowie, Douglas-Cowie, Savvidou, McMahon, Sawey, & Schröder, 2000) for
audiovisual expression.

Psychologists have various opinions about the importance of different nonverbal
cues in human emotion judgment. Ekman (1982) found that the relative contribu-
tions of facial expression, speech, and body gesture to emotion judgment depend
both on the emotional state and the environment where the emotional behavior oc-
curs whereas some studies (e.g., Ambady & Rosenthal, 1992) indicated that a facial
expression in the visual channel is the most important emotion cue. Many stud-
ies have theoretically and empirically demonstrated the advantage of integration of
multiple modalities in human emotion perception over single modalities (Ambady
& Rosenthal, 1992; Scherer, 1999; Russell et al., 2003; Yoshimoto et al., 2005).

A large number of studies in psychology, linguistics, and neuroscience con-
firm the correlation between some emotional displays (especially prototypical emo-
tions) and specific audio and visual signals (e.g., Ambady & Rosenthal, 1992;
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Cowie et al., 2001; Russell et al., 2003; Ekman & Rosenberg, 2005) and psycholog-
ical responses (Picard, Vyzas, & Healey, 2001; Stemmler, 2003). Human judgment
agreement is typically higher for facial expression modality than it is for vocal ex-
pression modality. However, the amount of the agreement drops considerably when
the stimuli are spontaneously displayed expressions of emotional behavior rather
than posed exaggerated displays.

Recent research results indicated that body movement and gaze significantly
facilitate the expression and perception of emotion. Specifically, body movement
(i.e., head, limbs, and torso) can provide information of the emotion intensity to-
gether with facial and vocal expression, and gaze changes (direct versus averted gaze
(Adams & Kleck, 2003), widened eyes, tensed lower lids (Ekman & Friesen, 1975))
are relevant to feeling and attitudes.

Detection of physiological change provides a window into the inner world of hu-
man emotion experience (Picard et al., 2001; Stemmler, 2003). But current technol-
ogy of physiological sensors limits its application in emotion analysis: the available
wearable physiological sensors imply wiring the subjects, which make it difficult to
elicit emotional displays without influencing results; it can be tricky to gather accu-
rate physiological data because the physiological sensing systems are influenced by
other nonemotional factors, including skin–sensor interface influence (positioning
of the sensors, application of amounts of gel), human activity, and hormones.

Thus, the progress of physiological research of emotion has been overshadowed
by that of audio and visual expression research. Recently, some new physiological
sensors have been applied for automatic emotion analysis, such as a sensor mouse in
the study (Liao, Zhang, Zhu, Ji, & Gray, 2006), sensor chair in the study (Kapoor &
Picard, 2005, Kapoor, Burleson, & Picard, 2007), and wireless noninvasive armband
in the study (Lisetti & Nasoz, 2004).

These emotion-related modalities (audio and visual expression, physiological re-
sponses) are often studied separately. This precludes finding evidence of the cor-
relation between them. Relatively few studies (Yoshimoto et al., 2005) proposed
some pragmatic scheme to integrate all of these modalities to analyze emotion in
the interaction setting (such as the conversation between committed couples). How-
ever, translating this scheme into one engineering framework for the purposes of
automatic emotion recognition remains challenging.

On the other hand, a growing body of research in cognitive sciences argues that
the dynamics of human behavior are crucial for its interpretation (Scherer, 1999;
Russell et al., 2003; Ekman & Rosenberg, 2005). For example, it has been shown
that temporal dynamics of facial behavior represents a critical factor for distinc-
tion between spontaneous and posed facial behavior (e.g., Cohn et al., 2004;
Ekman & Rosenberg, 2005; Valstar, Pantic, Ambadar, & Cohn, 2006) as well
as for categorization of complex behaviors like shame, and amusement (e.g.,
Ekman & Rosenberg, 2005). Based on these findings, we may expect that temporal
dynamics of each modality separately and their temporal correlations play an im-
portant role in the recognition of human naturalistic emotion behavior. However,
these are virtually unexplored areas of research.
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Another largely unexplored area of research is the relationship between emotion
and context. The interpretation of human behavioral signals is context-dependent.
For example, a smile can be a display of politeness, irony, joy, or greeting. To in-
terpret a behavioral signal, it is important to know the context in which this signal
has been displayed: where the expresser is (e.g., inside, on the street, in the car),
what his or her current task is, who the receiver is, and who the expresser is (Russell
et al., 2003).

14.3 Multimodal Emotion Recognition

With the advance of technology, an increased number of studies on machine analy-
sis of multimodal human emotion displays have emerged in recent years. It has been
shown by several experimental studies that integrating the information from multi-
ple modalities leads to an improved performance of emotion behavior recognition.
The study of Chen, Huang, Miyasato, and Nakatsu in 1998 represents an early at-
tempt toward multimodal emotion recognition, focusing on audiovisual fusion. In
this section we first offer a brief overview of the existing databases of multime-
dia recordings of human emotion displays, which provide the basis of automatic
emotion analysis. Next we examine available multimodal computing methods for
emotion recognition. We focus here on the efforts recently proposed in the literature
that represent multimodal approaches to the problem of multimodal human affect
recognition. For exhaustive surveys of the past work in machine analysis of mul-
timodal emotion expressions, readers are referred to the survey papers by Cowie
et al.( 2001), Pantic and Rothrantz (2003, 2006), Sebe, Cohen, and Huang (2005),
and Zeng, Pantic, Roisman, and Huang, (2008a).

14.3.1 Multimodal Databases

Authentic emotion expressions are difficult to collect because they are relatively rare
and short-lived, and filled with subtle context-based changes that make it difficult to
elicit emotion displays without influencing results. In addition, manual labeling of
spontaneous emotional expressions for ground truth is very time consuming, error
prone, and expensive. This state of affairs makes automatic analysis of spontaneous
emotional expression a very difficult task. Due to these difficulties, most of the ex-
isting studies on automatic analysis of human emotion displays were based on the
“artificial” material of deliberately expressed emotions, especially six basic emo-
tions (i.e., happiness, sadness, anger, disgust, anger, surprise), elicited by asking the
subjects to perform a series of emotional expressions in front of a camera and/or
microphone. As a result, the majority of the existing systems for human emotion
recognition aim at classifying the input expression as the basic emotion category
(Cowie et al., 2001; Pantic & Rothkrantz, 2003; Sebe et al., 2005).
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However, increasing evidence suggests that deliberate behavior differs in visual
appearance, audio profile, and timing from spontaneously occurring behavior. For
example, Whissell shows that the posed nature of emotions in spoken language may
differ in the choice of words and timing from corresponding performances in natural
settings (Whissell, 1989). When it comes to facial behavior, there is a large body
of research in psychology and neuroscience demonstrating that spontaneous and
deliberately displayed facial behavior has differences both in utilized facial muscles
and their dynamics (Ekman & Rosenberg, 2005).

For instance, many types of spontaneous smiles (e.g., polite) are smaller in ampli-
tude, longer in total duration, and slower in onset and offset time than posed smiles
(Cohn, Reed, Ambadar, Xiao, & Moriyama, 2004; Ekman & Rosenberg, 2005).
Similarly, it has been shown that spontaneous brow actions (AU1, AU2, and AU4 in
the FACS system) have different morphological and temporal characteristics (inten-
sity, duration, and occurrence order) than posed brow actions (Valstar et al., 2006).
It is not surprising, therefore, that methods of automated human emotion analysis
that have been trained on deliberate and often exaggerated behaviors usually fail to
generalize to the subtlety and complexity of spontaneous emotion behavior.

These findings and the general lack of a comprehensive reference set of au-
dio and/or visual recordings of human emotion displays motivated several efforts
aimed at the development of datasets that could be used for training and testing of
automatic systems for human emotion analysis. Table 14.1 lists some noteworthy
audiovisual data resources that were reported in the literature. For each database,
we provide the following information: emotion elicitation method (i.e., whether the
elicited emotion displays are posed or spontaneous), size (the number of subjects
and available data samples), modality (audio and/or visual), emotion description
(category or dimension), and labeling scheme. For other surveys of existing data-
bases of human emotion behavior, the readers are referred to Cowie et al. (2005),
Pantic et al. (2005), and Zeng, Hu, Liu, Fu, and Huang, (2006).

As far as the databases of deliberate emotion behavior are concerned, the fol-
lowing databases need to be mentioned. The Chen–Huang audiovisual database
(Chen, 2000) is to our knowledge the largest multimedia database containing fa-
cial and vocal deliberate displays of basic emotions and four cognitive states. The
FABO database of Gunes and Piccardi (2006) contains videos of facial expressions
and body gestures portraying posed displays of basic and nonbasic emotional states
(six prototypical emotions, uncertainty, anxiety, boredom, and neutral).

The existing datasets of spontaneous emotion behavior were collected in one of
the following scenarios: human–human conversation (Bartlett et al., 2005; Douglas-
Cowie et al., 2003; Roisman et al., 2004), human–computer interaction (SAL), and
clips from television (Douglas-Cowie et al., 2003). In most of the existing databases
discrete emotion categories are used as the emotion descriptors. The labels of pro-
totypical emotions are often used, especially in the databases of deliberate emotion
behavior. In databases of spontaneous emotion behavior, dimensional descriptions
in the evaluation-activation space (SAL2; Douglas-Cowie et al., 2003), and some

2 http://emotion-research.net/toolbox/toolboxdatabase.2006-09-26.5667892524.
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Table 14.1 Multimedia Databases of Human Emotion Behavior

References Elicitation
Method

Size Emotion Description Labeling

FABO face and
body gesture
(Gunes and
Piccardi, 2006)

Posed: two
cameras to
record facial
expressions and
body gestures,
respectively

23 adults
Mixed races
Available: 210
videos

Category: 6 basic
emotions, neutral,
uncertainty, anxiety,
boredom

N/A

Chen-Huang ‘00
(Chen, 2000)

Posed 100 adults,
9900 visual and
AV expressions

Category: 6 basic
emotions, and 4
cognitive states
(interest, puzzle, bore,
frustration)

N/A

Adult
Attachment
Interview ‘04
(Roisman
et al., 2004)

Natural: subjects
were interviewed
to describe the
childhood
experience

60 adults Each
interview last
30–60min

Category: 6 basic
emotions,
embarrassment,
contempt, shame,
general positive and
negative.

FACS

RU-FACS ‘05
(Bartlett et
al., 2005)

Natural: subjects
were tried to
convince the
interviewers they
were telling the
truth

100 adults Category: 33 AUs FACS

SAL ‘052 Induced: subjects
interacted with
artificial listener
with different
personalities

24 adults 10 h Dimensional
labeling/categorical
labeling

FEEL-TRACE

Belfast database
‘03
(Douglas-Cowie
et al., 2003)

Natural: clips
taken from
television and
realistic
interviews with
research team

125 subjects.
209 sequences
from TV, 30
from interview

Dimensional
labeling/categorical
labeling

FEEL-TRACE

application-dependent emotional states are usually used as the data labels. Interest,
boredom, confusion, frustration, uncertainty, anxiety, embarrassment, contempt, and
shame are some examples of the used application-dependent emotion-interpretative
labels.

Facial Action Units (AUs) (Ekman et al., 2002) are very suitable to describe
the richness of spontaneous facial behavior, as the thousands of anatomically pos-
sible facial expressions can be represented as the combination of a few dozens of
AUs. Hence, the labeling schemes used to code data include FACS AUs (Roisman
et al., 2004; Bartlett et al., 2005) and the Feeltrace system for evaluation-activation
dimensional description ((Douglas-Cowie et al., 2003; SAL2).
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Worthy of mention are the FABO face and body gesture database, SAL database,
and Belfast database which are publicly accessible, representing efforts toward en-
hancing communication and establishing reliable evaluation procedures in this field.

14.3.2 Audiovisual Computing

Influenced by basic emotion theory, most of the existing audiovisual emotion
recognition studies investigated recognition of the basic emotions from deliberate
displays. Relatively few efforts have been reported toward detection of nonbasic
emotional states from deliberate displays. Those include the work of Zeng and his
colleagues (Zeng et al., 2004, 2006, 2007b, 2008b), and that of Sebe et al. (2006),
who added four cognitive states (interest, puzzlement, frustration, and boredom)
considering the importance of these cognitive states in human–computer interac-
tion. A related study conducted on naturalistic data is that of Pal, Iyer, and Yantorno
(2006), who designed a system to detect hunger and pain as well as sadness, anger,
and fear from infant facial expressions and cries.

Most of the existing methods for audiovisual emotion analysis are based on
deliberately posed emotion displays (Go, Kwak, Lee, & Chun, 2003; Busso
et al., 2004; Song et al., 2004; Zeng et al., 2004, 2006, 2007b; Wang & Guan, 2005;
Hoch, Althoff, McGlaun, & Rigoll, 2005; Sebe et al., 2006). Recently a few excep-
tional studies have been reported toward audiovisual emotion analysis in sponta-
neous emotion displays. For example, Fragopanagos et al. (2005), Pal et al. (2006),
Caridakis et al. (2006), Karpouzis et al. (2007), and Zeng et al. (2007a) used the
data collected in psychological research interviews (Adult Attachment Interview),
Pal et al. (2006) used recordings of infant affective displays, whereas Fragopanagos
and Taylor (2005), Caridakis et al. (2006), and Karpouzis et al. (2007), used the
data collected in Wizard of Oz scenarios.

Because the available data were usually insufficient to build a robust machine-
learning system for recognition of fine-grained emotional states (e.g., basic
emotions), recognition of coarse emotional states was attempted in most of the
aforementioned studies. The study of Zeng et al. (2007) focuses on audiovisual
recognition of positive and negative emotion, whereas other studies report on clas-
sification of audiovisual input data into the quadrants in evaluation-activation space
(Fragopanagos et al., 2005; Caridakis et al., 2006; Karpouzis et al., 2007).

The studies reported in Fragopanagos et al., (2005), Caridakis et al. (2006), and
Karpouzis et al. (2007) applied the FeelTrace system that enables raters to continu-
ously label changes in emotion expressions. However, note that the study discussed
in Fragopanagos et al. (2005) reported on a considerable labeling variation among
four human raters due to the subjectivity of audiovisual emotion judgment. More
specifically, one of the raters mainly relied on audio information when making judg-
ments whereas another rater mainly relied on visual information. This experiment
actually also reflects the asynchronization of audio and visual expression. In order
to reduce this variation of human labels, the study of Zeng et al. (2007) made the
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assumption that facial expression and vocal expression have the same coarse emo-
tional states (positive and negative), and they then directly used FACS-based labels
of facial expressions as audiovisual expression labels.

The data fusion strategies utilized in the current studies on audiovisual emotion
recognition are feature-level, decision-level, or model-level fusion. An example of
feature-level fusion is the study in Busso et al. (2004) that concatenated the prosodic
features and facial features to construct joint feature vectors which are then used to
build an emotion recognizer. However, the different time scales and metric levels
of features coming from different modalities, as well as increasing feature-vector
dimensions influence the performance of a emotion recognizer based on a feature-
level fusion.

The vast majority of studies on bimodal emotion recognition reported on
decision-level data fusion (Go et al., 2003; Zeng et al., 2004, 2007b; Busso
et al., 2004; Hoch et al., 2005; Wang & Guan, 2005; Pal et al., 2006).

In decision-level data fusion, the input coming from each modality is modeled
independently and these single-modal recognition results are combined at the end.
Because humans display audio and visual expressions in a complementary and re-
dundant manner, the assumption of conditional independence between audio and
visual data streams in decision-level fusion is incorrect and results in the loss of
information of mutual correlation between the two modalities.

To address this problem, some model-level fusion methods have been proposed
that aim at making use of the correlation between audio and visual data streams
(e.g., Song et al., 2004; Fragopanagos et al., 2005; Caridakis et al., 2006; Sebe
et al., 2006; Zeng et al., 2006, 2008b; Karpouzis et al., 2007). Zeng et al., (2008b)
presented multistream fused HMM to build an optimal connection among multi-
ple streams from audio and visual channels according to maximum entropy and
the maximum mutual information criterion. Zeng et al. (2006) extended this fu-
sion framework by introducing a middle-level training strategy under which a vari-
ety of learning schemes can be used to combine multiple component HMMs. Song
et al. (2004) presented tripled HMM to model correlation properties of three com-
ponent HMMs that are based individually on upper face, lower face, and prosodic
dynamic behaviors. Fragopanagos and Taylor (2005) proposed an artificial neural
network with a feedback loop called ANNA to integrate the information from face,
prosody and lexical content. Caridakis et al. (2006) and Karpouzis et al. (2007) in-
vestigated combining the visual and audio data streams by using relevant neural
networks. Sebe et al. (2006) used a Bayesian network to fuse the facial expression
and prosody expression.

14.3.3 Other Multimodal Computing

In addition to the above-mentioned audiovisual emotion recognition studies mainly
based on facial expression and prosody expression, a few studies were constructed
to investigate the multi-visual-cue fusion, including fusion of facial expressions and
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head movements (Cohn et al., 2004; Zhang & Ji, 2005; Ji, Lan, & Looney, 2006),
fusion of facial expression and body gesture (Balomenos, Raouzaiou, Ioannou,
Drosopoulos, Karpouzis, & Kollias, 2005; Gunes & Piccardi, 2005), fusion of facial
expression and gaze (Ji et al., 2006), and fusion of facial expression and head and
shoulder movement (Valstar et al., 2007), based on the supplemental contribution of
gaze and head and body movement to emotion recognition.

Relatively few reports of automatic emotion recognition are found regarding in-
tegration of facial expressions and postures from a sensor chair (Kapoor et al., 2005,
2007), and the integration of facial expression and physiological signals (tempera-
ture, heart rate, and skin conductivity) from a sensor mouse (Liao et al., 2006), with
the aim of improvement of emotion recognition performance.

With the research shift toward analysis of spontaneous human behavior, analysis
of only acoustic information will not suffice for identifying subtle changes in vo-
cal emotion expression. Several audio-based studies investigated the combination
of acoustic features and linguistic features (language and discourse) to improve vo-
cal emotion recognition performance. Typical examples of linguistic-paralinguistic-
fusion methods are those of Litman & Forbes-Riley (2004) and Schuller, Villar,
Rigoll, and Lang (2005), who used spoken words and acoustic features; of Lee and
Narayanan, (2005), who used prosodic features, spoken words and information of
repetition; of Graciarena, Shriberg, Stolcke, Enos, & Kajarekar (2006), who com-
bined prosodic, lexical, and cepstral features; and of Batliner et al. (2003), who
used prosodic features, Part-Of-Speech (POS), Dialogue Act (DA), repetitions, cor-
rections, and syntactic-prosodic boundary to infer the emotion.

Finally, virtually all present approaches to automatic emotion analysis are
context-insensitive. Exceptions from this overall state of the art in the field in-
clude just a few studies. Pantic & Rothkrantz (2004) investigated interpretation
of facial expressions in terms of user-defined interpretation labels. Ji et al. (2006)
investigated the influence of context (work condition, sleeping quality, circadian
rhythm, and environment, physical condition) on fatigue detection, and Kapoor and
Picard (2005) investigated the influence of the task states (difficulty level and game
state) on interest detection. Litman et al. (2004) also investigated the role of context
information (e.g., subject, gender, and turn-level features representing local and
global aspects of the dialogue) on audio emotion recognition.

14.3.4 Exemplar Methods

We introduce in this section our efforts toward machine understanding of mul-
timodal affective behavior, which were published in related conferences and
journals.
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14.3.4.1 Audiovisual Posed Affective Expression Recognition

The team of Zeng and Huang made efforts (Zeng et al., 2004, 2006, 2007, 2008)
toward audiovisual posed affective expression recognition, based on the data of 20
subjects (10 females and 10 males) from the database Chen–Huang (Chen, 2000).
Although the subjects displayed affect expressions on request, the subjects chose
how to express each state. They were simply asked to display facial expressions and
speak appropriate sentences. Each subject was required to repeat each state with
speech three times. Therefore, for every affective state, there are 3 ∗ 20 = 60 video
sequences. And there are a total of 60∗11 = 660 sequences for 11 affective states.
The time of every sequence ranged from 2–6 seconds.

A tracking algorithm called Piecewise Bezier Volume Deformation (PBVD)
tracking (Tao & Huang, 1999) was applied to extract facial features in our experi-
ment. This face tracker uses a 3D facial mesh model embedded in multiple Bezier
volumes. The tracker can track head motion and local deformations of the facial fea-
tures. The local deformations of facial features in terms of 12 predefined motions
shown in Figure 14.3 are used for affect recognition.

For audio feature extraction, the entropic signal processing system named get f0,
was used to output the pitch F0 for the fundamental frequency estimate, RMS en-
ergy for the local root mean squared measurements, prob voice for the probability
of voicing, and the peak normalized cross-correlation value that was used to deter-
mine the output F0. The feature selection experimental results in Zeng et al. (2007)
showed pitch and energy are the most important audio factors in affect classification.
Therefore, in our experiment, we only used these two audio features for affect recog-
nition. Some prosody features, such as frequency and duration of silence, could have
implications in the HMM structure of energy and pitch.

For integrating coupled audio and visual features, we present a model-level fu-
sion, called multistream fused HMM (MFHMM) (Zeng et al., 2008b) which devises
a new structure linking the multiple component HMMs which is optimal accord-
ing to the maximum entropy principle and maximum mutual information (MMI)
criterion. In the MFHMM framework, the different streams are modeled by differ-
ent fused HMM components which connect the hidden states of one HMM to the

Fig. 14.3 Facial motion units.
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Fig. 14.4 Accuracies of dif-
ferent methods under various
audio SNR conditions.
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observation of other HMMs. The details of MFHMM, including its learning and
inference algorithms, can be found in Zeng et al. (2008b).

We applied leave-one-person-out cross-validation to test our person-independent
affect recognition algorithm. In our experiment, the composite facial feature from
video, energy, and pitch features from audio are treated as three coupled streams,
and modeled by three component HMMs. We used five methods to make deci-
sions: face-only HMM, audio-only HMM, independent HMM fusion (IHMM), and
MFHMM. IHMM is multistream HMM that assumes the independence among
different stream.

The experimental results under varying levels of audio SNR are shown in
Figure 14.4. They demonstrate that audiovisual fusion outperforms unistream meth-
ods in most cases; that is, both IHMM and MFHMM are better than visual HMM,
pitch HMM, and energy HMM. The exceptions are that the accuracies of IHMM in
0 and 5 dB audio SNR are lower than visual HMM. That shows that the IHMM com-
bination scheme cannot achieve better performance than individual modality when
the performance of certain individual streams is very bad. On the other hand, the
performance of MFHMM is still a little higher than the visual-only HMM in 0 dB
audio SNR. Thus, MFHMM is more robust for processing noisy data than IHMM.

14.3.4.2 Audiovisual Spontaneous Affective Expression Recognition

The team of Zeng and Huang also explored recognition of audiovisual sponta-
neous affective expressions occurring in a psychological interview named the Adult
Attachment Interview (AAI) that is used to characterize individuals’ current states of
mind with respect to past parent–child experiences. We present the Adaboost mul-
tistream hidden Markov model (Adaboost MHMM; Zeng et al., 2007) to integrate
audio and visual affective information.
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In order to capture the richness of facial expression, we used a 3D face tracker
(Tao & Huang, 1999) to extract facial texture images that were then transformed
into low-dimensional subspace by locality preserving projection (LPP). We used
pitch and energy in the audio channel to build audio HMM in which some prosody
features, such as frequency and duration of silence, could have implications. In the
audiovisual fusion stage, we treated the component HMM combination as a multi-
class classification problem in which the input is the probabilities of HMM compo-
nents and the output is the target classes, based on the training combination strategy
(Zeng et al., 2006). We used the Adaboost learning scheme to build fusion of the
component HMMs from audio and visual channels.

Based on the Adaboost learning scheme, these estimated likelihoods of compo-
nent HMMs were used to construct a strong classifier which is a weighted linear
combination of a set of weak classifiers. A set of weaker hypotheses was estimated,
each using likelihood of positive or negative emotion of a single-component HMM.
The final hypothesis was obtained by weighted linear combination of these hypothe-
ses where the weights were inversely proportional to the corresponding training
errors.

The personal-dependent recognition was evaluated on the two subjects (one fe-
male and one male). The emotion recognition results of unimodal (audio-only or
visual-only) methods and audiovisual fusion are shown in Figure 14.5. Two combi-
nation schemes (weighting and training) were used to fuse the component HMMs
from the audio and visual channels. Acc MHMM means MHMM with the weight-
ing combination scheme in which the weights are proportional to stream normalized
recognition accuracies. Adaboost MHMM means MHMM with the Adaboost learn-
ing schemes as described in Section 14.6.

Because we treated the multistream fusion as a multiclass classification problem,
there was a variety of methods that could be used to build the fusion. In addition
to Adaboost MHMM, we used LDC and KNN approaches to build this audiovisual
fusion, which are Ldc MHMM and Knn MHMM in Figure 14.5.

Fig. 14.5 Performance comparison among different modalities and different fusions.
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The performance comparison of these fusion methods is as follows: Adaboost
MHMM > Knn MHMM > Acc MHMM > Ldc MHMM. The results demonstrate
that the training combination outperforms the weighting combination, except Ldc
MHMM which is a linear fusion. Adaboost MHMM is the best among these four
fusion methods. Results show that Adaboost MHMM and Knn MHMM are better
than unimodal HMM (i.e., visual-only HMM and audio-only HMM). That suggests
that multiple modalities (audio and visual modalities) can provide more affective
information and have the potential to obtain better recognition performance than a
single modality.

In Figure 14.5, the accuracy of Acc MHMM equals the visual-only HMM for
male data but is worse than visual-only HMM for female data. Ldc MHMM is
worse than visual-only HMM in female and male cases. Both Acc MHMM and
Ldc MHMM are linear bimodal fusion. That suggests that the fusion method plays
an important role in audiovisual emotion recognition. Although the linear bimodal
combination is reasonable and intuitive, it is not guaranteed to obtain the optimal
combination in a realistic application. It is even possible that this combination is
worse than individual component performance, as shown in our experiments.

14.3.4.3 Multi-Visual-Cue Analysis of Posed Versus Spontaneous Expressions

Pantic’s team proposed a system of automatic discrimination between posed and
spontaneous smiles based on multiple visual cues including facial expression (de-
scribed in terms of AUs that produce it) and head and shoulder movements (Valstar
et al., 2007). Although few systems have been recently reported on automatic dis-
crimination between spontaneous and posed facial behavior (i.e., Valstar et al., 2006;
Littlewort et al., 2007), this is the only reported effort so far to automatically discern
spontaneous from deliberately displayed behavior based on multiple visual cues.

Conforming with the research findings in psychology, the method relies on char-
acteristics of temporal dynamics of facial, head, and shoulder actions and employs
parameters such as speed, intensity, duration, and occurrence order of visual behav-
ioral cues to classify smiles present in an input video as either deliberate or genuine
smiles.

A cylindrical head tracker, proposed by Xiao et al. (2003), was used to track
head motion; auxiliary particle filtering tracking method, proposed by Pitt and
Shephard (1999), was used to track the tip points of the shoulders; and particle
filtering with factorized likelihood, proposed by Patras and Pantic (2004), was
used to track 20 facial characteristic points such as the corners of the mouth and
the eyes (see Figure 14.6). Using the tracking data, the presence (i.e., activation)
of AU6 (raised cheeks), AU12 (lip corners pulled up), AU13 (lip corners pulled
up sharply), head movement (moved off the frontal view), and shoulder move-
ment (moved off the relaxed state), were detected first. For each of these be-
havioral cues, the temporal segments (neutral, onset, apex, and offset) were also
determined.
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Fig. 14.6 Illustration of the
tracking procedure used by
Valstar et al. (2007).

To detect the activated AUs and their temporal segments, the AU detector pro-
posed by Valstar and Pantic (2006), which combines Gentle Boost ensemble learn-
ing and Support Vector Machines, was used. To detect head and shoulder actions and
their temporal segments a rather simple rule-based expert system was used. Then a
set of midlevel feature parameters was computed for every temporal segment of each
present behavioral cue. These parameters included the segment duration, the mean
and the maximum displacements of the relevant points in x- and y-directions, the
maximum velocity in x- and y-directions, and the asymmetry in the displacements.

In addition, the second-order polynomial functional representation of the dis-
placements of the relevant points, and the order in which the behavioral cues have
been displayed, were computed as well. Gentle Boost has been used to learn the
most informative parameters for distinguishing between spontaneous and volitional
smiles and these parameters have been used further to train a separate Support Vec-
tor Machine for each temporal segment of each of the five behavioral cues (i.e., in
total 15 GentleSVMs). The outcomes of these 15 GentleSVMSs are then combined
and a probabilistic decision function determines the class (spontaneous or posed) for
the entire smile episode. When trained and tested on a set containing 100 samples
of volitional smiles and 102 spontaneous smiles from the MMI Facial Expression
database (Pantic et al., 2005, Pantic & Bartlett, 2007), the proposed method attained
a 94% correct recognition rate (0.964 recall with 0.933 precision) when determining
the class (spontaneous or posed) of an input facial expression of smile.

14.3.4.4 Audiovisual Laughter Detection

Research in cognitive sciences provided some promising hints that vocal outbursts
and nonlinguistic vocalizations such as yelling, laughing, and sobbing may be
very important cues for decoding someone’s affect/attitude (Russell et al., 2003),
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therefore few efforts toward automatic recognition of nonlinguistic vocal outbursts
have been recently reported (Zeng et al., 2008a). Most of these efforts are based
only on audio signals such as the method for automatic laughter detection proposed
by Truong and van Leeuwen, (2007).

However, because it has been shown by several experimental studies in ei-
ther psychology or signal processing that integrating the information from audio
and video leads to an improved performance of human behavior recognition (e.g.,
Petridis and Pantic (2008)), few pioneering efforts toward audiovisual recognition
of nonlinguistic vocal outbursts have been recently reported including audiovisual
analysis of infants’ cries proposed by Pal et al. (2006) and audiovisual laughter
recognition proposed by Petridis and Pantic (2008). The latter is the only effort
reported so far aimed at automatic discrimination between laughter and speech in
naturalistic data based on both facial and vocal expression.

The method uses particle filtering with factorized likelihood, proposed by Patras
and Pantic 2004), to track 20 facial characteristic points such as the corners of the
mouth and the eyes in an input video. Then it uses principal component analysis
(PCA) to distinguish changes in the location of facial points caused by changes
in facial expression from those caused by rigid head movements. The changes in
facial expression are used in further processing. To detect laughter from the audio
signal, spectral features, namely perceptual linear prediction coding features and
their temporal derivatives, have been used.

Both feature-level fusion and decision-level fusion have been investigated. To
achieve decision-level fusion, the input coming from each modality (audio and
video) was modeled independently by a neural network preceded by Ada Boost,
which learns the most informative features for distinguishing between laughter and
speech as shown by the relevant modality. Then, these single-modal recognition re-
sults were combined at the end using the SUM function. To achieve feature-level
fusion, audio and video features were concatenated into a single feature vector (by
up-sampling so that the video frame rate equaled the audio frame rate of 50 frames
per second).

The resulting feature vector was then used to train the target Ada neural net-
work. When trained and tested on a set of 40 audiovisual laughter segments and 56
audiovisual speech segments from the AMI corpus (http://corpus.amiproject.org/),
the proposed method attained an average 86% correct recognition rate (feature-level
fusion: 0.869 recall with 0.767 precision; decision-level fusion: 0.817 recall with
0.823 precision) when determining the class (speech or laughter) of an input audio-
visual episode.

14.4 Challenges

There are two new trends in the research on automatic human emotion recogni-
tion: analysis of spontaneous emotion behavior and multimodal analysis of human
emotion behavior including audiovisual analysis, combined audio-based linguistic
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and nonlinguistic analysis, and multicue visual analysis based on facial expres-
sions, gaze, head movements, and/or body gestures. Several previously recognized
problems have been addressed including the development of more comprehensive
datasets of training and testing material. At the same time, several new challeng-
ing issues have been recognized, including the necessity of studying the temporal
correlations between the different modalities (audio and visual) as well as between
various behavioral cues (e.g., face, gaze, head, and body gestures, and linguistic and
paralinguistic information). This section discusses these issues.

14.4.1 Databases

Acquiring valuable spontaneous emotion behavior data and the related ground truth
is far from being solved. To our knowledge, there is still no database of emotion
behavior that records data of all emotion-related modalities (facial and vocal ex-
pression, physiological responses, body movement, and gaze). In addition, although
much effort has been made toward collection of audiovisual databases of sponta-
neous human emotion behavior, most of the data contained in the available data-
bases currently lack labels. In other words, no metadata are available that could
identify the emotional state displayed in a video sample and the context in which
this emotional state was displayed.

Although some promising coding systems have been proposed to label the facial
action (e.g., FACS (Ekman et al., (2002)), and audiovisual expression (e.g., Feel-
trace (Cowie et al. 2000)), how to reliably code all emotion-related modalities for
automatic emotion systems remains an open issue. Much work is needed to under-
stand the correlation of the dynamic structure of these modalities. The metadata
about the context in which the recordings were made such as the utilized stimuli,
the environment, and the presence of other people, are needed because these contex-
tual variables may influence masking of the emotional reactions. In addition, human
labeling of emotion behavior is very time consuming and full of ambiguity due to
human subjective perception. Improving the efficiency and reliability of labeling
multimodal emotion databases is critical in the recognition of spontaneous emotion.

Readers are referred to Pantic and Rothkrantz (2003), Pantic et al. (2005), Cowie
et al. (2005), and Zeng et al., (2006), which discussed a number of specific research
and development efforts needed to build a comprehensive, readily accessible ref-
erence set of emotion displays that could provide a basis for benchmarks for all
different efforts in the research on machine analysis of human emotion behavior.

14.4.2 Multimodal Computing

Although all agree that multisensory fusion including audiovisual data fusion, lin-
guistic and paralinguistic data fusion, multi-visual-cue data fusion would be highly
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beneficial for machine analysis of human emotion, it remains unclear how this
should be accomplished. Studies in neurology on fusion of sensory neurons (Stein
& Meredith, (1993) are supportive of early data fusion (i.e., feature-level data fu-
sion) rather than of late data fusion (i.e., decision-level fusion). However, it is an
open issue how to construct suitable joint feature vectors composed of features from
different modalities with different time scales, different metric levels, and different
temporal structures. Simply concatenating audio and video features into a single fea-
ture vector, as done in the current human emotion analyzers that use feature-level
data fusion, is obviously not the solution to the problem.

Due to these difficulties, most researchers choose decision-level fusion in which
the input coming from each modality is modeled independently and these single-
modal recognition results are combined at the end. Decision-level fusion, also called
classifier fusion, is now an active area in the fields of machine learning and pattern
recognition. Many studies have demonstrated the advantage of classifier fusion over
the individual classifiers due to the uncorrelated errors from different classifiers
(e.g., Kuncheva, 2004). Various classifier fusion methods (fixed rules and trained
combiners) have been proposed in the literature, but optimal design methods for
classifier fusion are still not available. In addition, because humans simultaneously
employ tightly coupled audio and visual modalities, multimodal signals cannot be
considered mutually independent and should not be combined only at the end as is
the case in decision-level fusion.

Model-level fusion or hybrid fusion that aims at combining the benefits of both
feature-level and decision-level fusion methods may be a good choice for this fusion
problem. However, based on existing knowledge and methods, how to model mul-
timodal fusion for spontaneous emotion displays is largely unexplored. A number
of issues relevant to fusion require further investigation, such as the optimal level of
integrating these different streams, the optimal function for the integration, as well
as inclusion of suitable estimations of the reliability of each stream. In addition, how
to build context-dependent multimodal fusion is an open and highly relevant issue.

Here we want to stress that temporal structures of the modalities (facial and vo-
cal) and their temporal correlations play an extremely important role in the interpre-
tation of human naturalistic, multimodal emotion behavior. Yet these are virtually
unexplored areas of research, due to the fact that facial expression and vocal expres-
sion of emotion are usually studied separately.

An important related issue that should be addressed in multimodal emotion
recognition is how to make use of information about the context (environment,
observed subject, his or her current task) in which the observed emotion behav-
ior was displayed. Emotions are intimately related to a situation being experi-
enced or imagined by a human. Without context, a human may misunderstand
the observed person’s emotion expressions. Yet, with the exception of a few stud-
ies investigating the influence of context on emotion recognition (e.g., Litman &
Forbes-Riley, 2004; Pantic & Rothkrantz, 2004; Kapoor & Picard, 2005; Kapoor et
al., 2007; Ji et al., 2006), virtually all existing approaches to machine analysis of
human emotion are context-insensitive.
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Building a context model that includes person ID, gender, age, conversation
topic, and workload needs help from other research fields such as face recognition,
gender recognition, age recognition, topic detection, and task tracking. Because the
problem of context sensing is very difficult to solve, pragmatic approaches (e.g.,
activity- and/ or subject-profiled approaches) should be taken.

14.5 Conclusion

Multimodal information fusion is a process that enables human ability to assess
emotional states robustly and flexibly. In order to understand the richness and
subtlety of human emotion behavior, the computer should be able to integrate
all emotion-related modalities (facial expression, speech, body movement, gaze,
and physiological response). Multimodal emotion recognition has received rather
less research attention than single modality, due to the complexity of multimodal
processing and the availability of relevant training and test material. As this chapter
describes, we have witnessed increasing efforts toward machine analysis of multi-
modal emotion recognition in the last decade. Specifically, some databases of acted
and spontaneous emotion displays have been collected by researchers in the field,
and a number of promising methods for multimodal analysis of human spontaneous
behavior have been proposed.

In the meantime, several new challenging issues have been identified. Let us
reconsider the interview scenario described in the introduction where the subject
expressed her emotion by using facial expression, speech (linguistic content and
paralinguistic behavior), head movement, and gaze in an efficient way. The com-
plexity of the occurring emotion behavior challenges our current knowledge and
approaches in machine analysis of emotion behavior.

In order to enable the computer to reliably perceive human emotion displays as
humans do, much effort across multiple research disciplines is needed to address
the following important issues: build a comprehensive, readily accessible reference
set of emotion displays that could provide a basis for benchmarks for all different
efforts in the field; develop methods for spontaneous emotion behavior analysis that
are robust to the observed person’s arbitrary movement, occlusion, complex and
noisy background; devise models and methods for human emotion analysis that take
into consideration temporal structures of the modalities and temporal correlations
between the modalities (and/or multiple cues), and context (subject, his or her task,
environment); and develop better methods for multimodal fusion.

The progress of research on automatic emotion recognition based on multi-
modal behavior and physiological components will greatly contribute to develop-
ing a comprehensive understanding of the mechanisms involved in human behavior,
and enhancing human–computer interaction through emotion-sensitive and socially
intelligent interfaces.
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